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'ne unique K~pulse of a finite electromagnetic scatter 
is conceptually defined as a

time.gimited excitation of minimal duration which produces time-limited 
response waveforms

for that specific object at all possible combinations of aspect and radar polarization.

As a result of the aspect and polarization invariant feature of 
the K-pulse, it is a use-

ful tool in target identification. In practical,,applications, to obtain the unique K-

pulse is not feasible but generally useful K-pulse approximations are in order. 
The K-

pulse estimation technique suggested in this dissertation is based on the annihilation of

the target's natural resonances under (. pulse excitation. This technique basically ad-

dresses a simultaneous optimization problem in order to minimize the late-time energy

content of the target response at several combinations of aspect 
and polarization. The K-

pulse waveform is modeled as an impulse function at the initiation time and then a

continuous time-limited function which can be mathematically represented by discrete or

continuous basis functions. The suggested K-pulse synthesis technique is quite general in

the sense that it can be applied to both geometrically simple and complicated targets upon

the availability of some band-limited theoretical or measured 
scattering data. Also, es-

timation of the target poles from the synthesized K-pulse spectrum is an tortant by-

product of this technique. Target identification, even at reasonably low sign 1-to-noise

ratio levels, is successfully demonstrated for various classes of 
targets such s conduct-

ing thin-vires, conducting spheres, aircraft, ships and land 
vehicles using the K-pulse

concept.
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Prologue

The results presented in the main text of this report demonstrate
that the K-pulse can be successfully exploited for the identification
of realistic targets such as aircraft, ships and land vehicles. The
practicality of the K-pulse technique in terms of the required
bandvidth and frequency span (target electrical size) required can be
questioned. Such questions are refuted in Appendix F vhere it is shown
that full scale measurements of a real aircraft over a severely limited
bandwidth (S-band) can also be exploited for K-pulse purposes.
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CHAPTER I

InrrR01CTION

Estimation of the physical features of an object or medium from

its interactions with electromagnetic waves is a challenging problem,

and radar target identification is one of the most well-known

applications of practical significance. The fundamental problem in

radar target identification is to extract some characteristic

information which is uniquely specified by the physical properties

(size, shape and composition) of an "unknown" object from a restricted

set of measurements.

The radar cross section (RCS) is a well-known masure of

electromagnetic scattering properties of an object, but it cannot be

used directly as a tool for identification purposes since the RCS of a

radar target is not only a function of frequency but also a function of

aspect and radar polarization. The earliest attempts to discriminate

radar targets focused on variations of the received signal with choice

of transmitter and receiver polarization at a single aspect and

frequency but are found to be useful only for differentiating classes

of targets with special geometrical or electrical symmetries Ill. The

next idea was the determination of scattering centers on a target from

the complex spectral density function. But, as discussed in [1, a

discrete distribution of scattering centers is not sufficient to

uniquely define a target.



Extensive use of linear system analysis in electromagnetic

scattering problems was first introduced by Kennaugh and Cosgriff [2)

in their 1958 paper. They proposed the concept of impulse response for

three-dimensional electromagnetic scatterers and described the

relationship between the geometry of a perfectly conducting target and

its impulse response waveform. This approach was later formalized by

Kennaugh and Moffatt [3) leading to very important results in transient

analysis of electromagnetic scattering problems in terms of natural

resonances of objects. In their 1965 paper, it is suggested that an

electromagnetic scatterer can be approximately modeled as a linear

time-invariant lumped parameter system, at sufficiently low

frequencies. The implication of this statement is that the transfer

function of an object can be approximated as a ratio of two polynomials

vhere the zeros of the denominator give the complex natural resonant

(CNR) frequencies of the system. Later, the complex natural resonance

idea vas extensively studied and formalized as the Singularity

Expansion Method (SEN-) by Baum [4,5). Since then, a substantial amount

of research has focused on the extraction of OR frequencies of

potential radar targets (6-101 for two reasons. First, the CR

frequencies are uniquely determined by the physical properties of an

object. Secondly, these frequencies are independent of the aspect

angle and polarization of the transmitted and received radar signals.

In other words, the infinite set of CNR frequencies constitutes an

aspect and polarization-independent descriptor of a finite

electromagnetic scatterer as used in radar target identification.

Although this idea sounds quite attractive from the theoretical point

2



of view, sone crucial difficultles have been noticed in practice An

exact solution for the CNR frequencies is knovn to be possible for only

spherical scatterers (11] and thin-circular disks [12] vhose vector

wave functions are separable. The CNR frequencies of other finite

objects must be estimated using either the Integral equation

formulations, as in the Moment Method [131, or asymptotic techniques

such as the geometrical theory of diffraction (GTD) [14,15]. But the

usefulness of these approaches to estimate the CNR frequencies are

limited by the restrictions on the electrical size and the geometrical

complexity of radar targets. Another possibility is the numerical

extraction of the system poles directly from the measured transient

response (or from the corresponding frequency domain data) of the

object [16-20]. Most of the methods using this approach are found to

be highly sensitive to the signal-to-noise ratio of the measured

signals. Consequently, a direct use of CHR frequency information in

target identification does not seen to be adequate for identifying

real-vorld radar targets of complicated geometries, especially vhen

they are detected in noisy environments. On the other hand, the

concept of natural resonances has been recognized as an important

building block in the development of a new target identification method

called the Kill-pulse or K-pulse method.

The K-pulse concept vas first suggested by Kennaugh in the early

70's [21,22] to devise an inversion technique vhich utilizes as vide a

frequency spectrum as possible but involves only a fev aspects, in

contrast to conventional imaging techniques. Later, he gave a formal
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definition of a special time-limited excitation waveform called the "K-

pulse waveform" for an isolated scatterer and introduced a K-pulse

synthesized technique which employed the dominant CNR frequencies of

the object in his 1981 paper 1151. He also stressed that the K-pulse

waveform is an aspect and polarization independent descriptor of an

object and can be effectively used for target identification. The need

for new techniques of K-pulse synthesis, especially for low-Q and/or

geometrically complicated targets, has been inevitable but the basic

concept introduced by Kennaugh remains the main building block of the

K-pulse method.

The purpose of this report is to develop a K-pulse synthesis

technique which is sufficiently general to be applicable to

realistically complicated target identification problems. Chapter II

is devoted to an overview of the previously suggested K-pulse

techniques in the literature, which are found to be useful in case of

various objects with simple geometries. The extension of the K-pulse

applications to low-Q and/or geometrically complicated radar targets is

made possible by the contributions of this report as described in

Chapter III. Presented also in this chapter are an alternative

mathematical representation of a K-pulse waveform in terms of Legendre

polynomials and a target identification scheme employing a normalized

instantaneous energy concept, both introduced for the first time in

this report. The applications of the proposed K-pulse synthesis and

target identification techniques to two classes of geometrically simple

conducting targets; linear thin-vires and spherical scatterers are

demonstrated in Chapter IV. The K-pulse vaveforms of these targets are

/A



estimated using both the discrete sampling approach and the Legendre

polynomial approach. Also demonstrated in this chapter is the

advantage of using the normalized instantaneous energy function concept

in target identification of lov-Q objects such as a conducting sphere,

especially under noisy conditions. The applications of both K-pulse

estimation and target identification techniques are extended to three

different classes of geometrically complicated and generally lov-Q

targets (ships, land vehicles and aircraft) in the next three chapters.

Chapter V focuses on the applications to tvo model ships including also

a demonstration of the K-pulse estimation technique using the Legendre

polynomial approach. Chapter VI presents the results of applications

to a model tank and a model personnel carrier. Applications to three

different commercial aircraft models are given in Chapter VII. The

noise performance of the target identification technique is tested for

various levels of signal-to-noise ratio in Chapters V, VI and VII.

Finally, Chapter VIII concludes the report with a discussion of the

results obtained in the previous chapters together with the suggestions

for future research in the K-pulse estimation and target identification

studies.

Several appendices are provided at the end of the report. Several

rules of thumb for the estimation of K-pulse duration and cut-off times

are given in Appendix A. Appendix B discusses some important points

related to the interpretation of the normalized response energy curves

for the purpose of target identification. Extraction of the target

poles (CNR frequencies) as a by-product of the proposed K-pulse

synthesis technique is described in Appendix C. Definitions and



orthogonality properties of the original and modified Legendre

polynomials are provided in Appendix D. Appendix E summarizes hov to

add random Gaussian noise to the original data to be used in noise

performance testing of the suggested target identification scheme.

Finally, the K-pulse estimation procedure from narrov band full-scale

aircraft data is demonstrated in Appendix F as a pilot study towards

the design of sophisticated (substructure-related) K-pulse vaveforms.
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CHAPTER II

AN OVERVIEW OF RESEARCH ON K-PULSE TECHNIQUES

As stated briefly in the previous chapter, the K-pulse concept was

first suggested and formalized by Kennaugh. He introduced the idea of

synthesizing a time-limited (TL) excitation waveform, called the

K-pulse, for a target to produce TL responses regardless of the aspect

and radar polarization [15,21,22). In other words, this characteristic

vaveform is an aspect and polarization invariant descriptor of the

corresponding target such that the target response can be TL under this

special excitation vaveform at all combinations of aspect and

polarization. A similar problem vas studied in the early 60's by Gerst

and Diamond (231 for the purpose of reducing intersymbol interference

in communication systems. Given a time-invariant linear system, they

proved that there exist input pulses of arbitrary time duration such

that the corresponding output of the system also turns out to be time-

limited. In the following years, Campbell studied the problem of

designing input vaveforms to yield time-limited orthogonal outputs for

the purpose of signal detection using matched filters in a

communication system (24,25). Kennaugh's K-pulse concept as well as

the former studies just mentioned were based on the idea of input

vaveform shaping via insertion of zeros in the Laplace transform

domain, at the same locations as the s).-.em poles, to produce time-

limited system responses by pole-zero cancellation. The reasoning
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behind this idea may be best explained in terms of complex natural

resonances of an electromagnetic scatterer. When a scatterer is

modeled as a linear time-invariant distributed parameter system [2,3),

its transfer function. H(s,Q), can be shown as ameromorphic function

[341 in the complex frequency domain (s-domain) and can be factored as

H(s,Q) = N(sQ) (2.1a)D(s)

where N(s,Q) and D(s) are entire functions and the parameter "Q"

implies the aspect and polarization dependency. Then, the scattered

impulse response, h(t,Q), is computed as

h(t,Q) = L1 (H(s,Q)) (2.1b)

or

h(t,Q) = L-1(N(s,Q)} * D" (2.1c)

where "L 1" denotes the inverse Laplace operator and the asterisk "*"

refers to the convolution operation. Thus, the impulse response can be

decomposed, at least theoretically, as the convolution of two parts;

one is excitation dependent and the other one is excitation invariant.

The response of the scatterer, to an arbitrary input waveform,

x(t), can be computed as

r(t,Q) = h(t,Q)*x(t) (2.2a)

in time domain, or as



R(s,Q) - H(sQ) X(s) (2.2b)

in the Laplace transform domain. Using Equations (2.1a) and (2.2b),

one can write

R(s,Q) i N(s9Q) X(s) . (2.2c)D(s)

As discussed in [231, [26] and [271, the Laplace transform of every TL

function can be easily proved to be an entire function. Conversely,

the inverse Laplace transform of a function, defined in the complex

frequency domain, can be TL only if the function itself is entire and

of exponential type. Then, one of the necessary conditions for having

a TL system response is that the Laplace transform function, R(sg),

should be entire. This condition is satisfied when the function, X(s),

is also entire and its zeros cancel the zeros of D(s) which are often

called the system poles. Consequently, the K-pulse vaveform, k(t), of

an object can be uniquely defined as a special TL excitation such that

there is a one-to-one correspondence between the zeros of its Laplace

transform and the poles of the object. It can easily be shown that the

duration of the unique K-pulse vaveform is shorter than the durations

of all other TL input vaveforms which also produce TL target outputs at

all aspects and polarizations. As a matter of fact, those TL functions

can be thought as convolutions of the unique K-pulse vaveform with some

arbitrary TL functions. At this point, it should be noted that the

unique K-pulse as defined above is a completely theoretical concept,

not a practically realizable one. This fact was also implied by the

9



thin-wire applications of the K-pulse method presented by Kennaugh

[21,221 in that an approximate K-pulse vaveform characterized only by

some dominant target poles may be good enough for almost all practical

purposes.

About four years after Kennaugh's introductory K-pulse paper, the

K-pulse vaveform for a conducting thin-circular loop was provided by

Kim, Wang and Moffatt 1281. They utilized the dominant CNR frequencies

of the object by inserting zeros into an exponential type entire

Laplace transform expression given by Gerst and Diamond [231 to produce

an approximate K-pulse waveform. Later, an application of the K-pulse

approach to non-uniform transmission lines was studied by Kennaugh,

Moffatt and Wang [29). Meanwhile, Rothwell et al. [30,311 and Chen et

al. [321 proposed a target identification approach called the

Extinction-pulse (or E-pulse) method which appears to have originated

from the basic K-pulse idea. As discussed by Fok and Hoffatt [331,

under certain conditions, the E-pulse method and the K-pulse method are

completely equivalent in terms of the basic concepts and models they

use.

Almost all of the references given so far share one important

aspect; direct use of target CNR frequencies (poles) for K-pulse (or E-

pulse) synthesis. Although this approach has proved to be successful

for geometrically simple targets for which the dominant CNR frequencies

can be estimated by various techniques, the difficulties of accurate

pole extraction in the case of geometrically complicated targets and

noisy radar measurements make such an approach difficult if not

impossible to use in real-vorld target identification problems.

10



Consequently, it has been inevitable that a search for an alternative

technique of K-pulse synthesis which does not need a priori information

on the target COR frequencies would occur. Remembering that the

ultimate purpose of the K-pulse method is to generate (conceptually) a

special TL excitation vaveform which produces TL responses at all

aspects and polarizations, a reasonable approach may be to solve this

problem in the reverse direction. In other words, an optimal solution

for an approximate K-pulse vaveform may be obtained by forcing the

target response to be time-limited. This approach was recently

demonstrated by Fok, Moffatt and Wang [34,351 for geometrically simple,

high-Q and low-Q targets. Since the K-pulse synthesis technique used

in this report is based on the same basic idea, it will be useful to

examine the approach introduced by Fok et al. in some detail. The K-

pulse synthesis procedure described in (35] basically refers to an

optimization problem where the first step is to assume a mathematical

representation for the K-pulse vaveform as

N
k(t) - 6(t) + T anS(t-nr) (2.3)

n-1

with =T/N, where T is the duration of the K-pulse, N is the number of
discrete delta functions in the model and the a 's are unknown real

n

constants. The summation term in this expression approximates a

continuous function whose equally-spaced sample values are represented

by the weights of delta functions falling in the semi-closed time

interval (0,T]. A cost function, J, is then defined as

11



J f [k(t)*h(t)1 2 dt ; (2.4)

to be the natural resonance-related energy content of the target

response after a cut-off time, TR.

In this expression, h(t) is the impulse response of the target at

an arbitrary aspect and radar polarization, TC represents an

arbitrarily long time duration and the asterisk denotes convolution.

By minimizing the cost function J, the unknovn veights, an, of the

impulsive basis functions can be estimated. It should be noted that

the choice of this cost function is due to the folloving interpretation

of the scattering mechanism from the systems theory point of viev.

When a finite object is excited by an aperiodic pulse, its response

consists of first a time-limited forced response as the incident

wavefront moves over the object and then a free or natural response

vhich keeps ringing after the vavefront moves beyond the object. The

amount of energy to be minimized must be related to these natural modes

only. Othervise, the zero-pattern of the K-pulse spectrum vould be

totally different from the pole-pattern of the target and the resultant

waveform vould not be a K-pulse. Consequently, the lover limit of the

integral in Equation (2.4) must be chosen very carefully. As stated by

Fok et al., the most important feature of their K-pulse synthesis

technique is that it does not need a priori knovledge of the target

poles. In fact, the target poles can be estimated as the zeros of the

Laplace transform of the synthesized K-pulse vaveform. The

applications of this technique are successfully demonstrated in [341

12



and [351 for simple geometries such as a grounded dielectric slab,

linear thin-rire, thin-circular conductor, conducting sphere,

conducting circular disk and circular vaveguides. But for applications

involving complicated target geometries as in the case of aircraft,

ships, etc., this proposed approach is not found to be useful due to

some important shortcomings of the problem formulation. It is one of

the purposes of the next chapter to suggest several modifications of

crucial importance to this existing K-pulse synthesis technique, vhich

are basically related to the definition of the cost function.
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CBAPTU III

TBRORIES AND FORNULATIONS

This chapter introduces the theoretical aspects of a new K-pulse

synthesis technique, mainly for geometrically complicated targets and

the related target identification approach. First, the K-pulse

synthesis technique will be described by stressing its similarities to

and differences from the technique suggested by Fok et al. Secondly,

an alternative mathematical representation of the K-pulse in terms of

Legendre polynomials will be introduced. Finally, two versions of a

target identification scheme will be described% one using the time-

limited K-pulse response idea directly, and the other one employing the

normalized instantaneous energy functions associated with the target

responses.

A. K-PULSE ESTIMATION

As discussed in the previous chapter, almost none of the K-pulse

synthesis techniques suggested in the literature to this point seem to

be applicable to real-vorld target identification problems. But, among

all the others, the technique suggested by Fok et al. should be given a

special credit for developing a K-pulse synthesis procedure which is

not dependent upon a priori target pole information. There are three

important reasons why this technique works very well for simple target

geometries as presented in (341 and [351, but fails for sophisticated

14



ones. First, the existence of target substructures complicates the

natural resonance mechanisms so that estimation of time durations for

the K-pulse vaveforms turns out to be a very difficult problem.

Secondly, the use of a target's impulse response at a single

combination of aspect and radar polarizations is usually adequate for

simple and highly symmetrical target geometries but does not provide

sufficient information for complicated structures. The reason is that

the target pole residues are known to be aspect and polarization

dependent so that some of the natural modes might be excited very

weakly for a specific experiment chosen for the K-pulse synthesis

procedure. Consequently, the resultant approximate K-pulse vaveform

does not contain the characteristic features due to such target poles

and may easily fail in producing time-limited responses at some other

aspects and radar polarizations. Thirdly, in most real-vorld target

identification problem, available scattered data are "incomplete" in

the sense that the frequency range of radar measurements may not be

spanning the early part of the resonance region. The loss of

information at such frequencies means no access to at least several

target pole-pairs falling in that range. Therefore, a K-pulse vaveform

synthesized from such an incomplete data set will be a relatively poor

approximation to the true K-pulse.

The K-pulse synthesis technique introduced in this report is

conceptually similar to the one suggested by Fok et al. Both

techniques address an optimization problem to synthesize an approximate

K-pulse vaveform of a target from its scattered impulse response

without using any pole information. Furthermore, both assume a similar

15



mathematical model for the K-pulse; a unit strength impulse function at

the initiation time and then a continuous function of finite duration

whose shape is to be estimated via minimization of the energy content

of the target's natural response. The distinguishing feature of the

technique suggested in this report is the use of a simultaneous "multi-

combinational" system analysis in the following sense: the response of

a geometrically complicated target is computed at several combinations

of the aspect and/or polarization and the energy content of these

responses beyond the corresponding K-pulse response durations is

minimized simultaneously to obtain an optimal K-pulse waveform. This

conceptually simple modification has been found to be substantially

useful in extending the K-pulse applications to sophisticated target

geometries [36). As another important modification to the existing

technique, a new cost function is employed in this report, whose effect

on the performance of the K-pulse synthesis technique will be explained

during the derivations.

The assumed time-domain model for the K-pulse consists of a unit

strength impulse (Dirac delta) function, S(t), and then a continuous

time function kC (t), such that

k(t) - S(t) + kC(t) (3.1a)

for

t e [O,Tki (3.1b)

where Tk is the K-pulse duration. The K-pulse response of a target can

be computed as

16



ri(t) - h(t) * [8(t) + kC(t)] (3.2a)

or

r I(t) - hI(t) + [hI(t) * kC(t)I (3.2b)

vhere hi(t) is the scattered impulse response of the target, the

asterisk "*" denotes the convolution operator, and the superscript "I"

refers to an arbitrary combination of aspect and radar polarization.

The right hand side of the last equation is composed of tvo functions:

the impulse response and its convolution vith the continuous part of

the K-pulse. Theoretically, both of these functions are of infinite

time duration but they must sum up to a time-limited function, r i(t),

as a result of natural response annihilation. Then, the problem is to

synthesize the function, kc(t), properly to meet this requirement. As

mentioned earlier, the simultaneous multi-combinational analysis

approach vill be used in connection vith an optimization problem for

this purpose. The cost function to be minimized is defined as follovs:

J a J + b J2 (3.3a)

vith

Irt(t)12 dt

-1 Z w  (3.3b)

i-l L Iri(t)12dt

and

2 T Iri(t) 2dt (3.3c)
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where I is the number of combinations of aspect and radar polarization
i

used in the K-pulse synthesis; TL's are the combination dependent cut-

off times which represent the estimated time durations of the target's

forced response at each combination; and the constants a, b, Oi's and

g,'s are weight factors. This cost function can be expressed in a

compact form as

J -a Wi + b g iE~ (3.4)

defining the early-time energy content such that

i

F I L Ir'(t l2dt (3.5a)

0

and the late-time energy content given by

= JTi Iri(t) 2dt (3.5b)

L

where the target response is for the ith combination of aspect and

radar polarization. Ideally, E must represent the energy content of

the natural target response only such that its minimization results in

a correct zero insertion into the K-pulse spectrum. But the late

portion of the forced response usually overlaps with the early portion

of the natural response. Consequently, the cut-off time Ti must be

L
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chosen in such a way that some part of the natural response energy is

left unused for the sake of preventing the minimization of forced

response energy. The use of simultaneous multi-combinational system

analysis for K-pulse formulation is found to be very effective in

spotting an improper pre-estimation of cut-off times such that a

serious convergence problem occurs during the minimization if the cut-

off times are assigned incorrectly. It should also be noted that the

i iminimization of the ratio of F to E at each combination as implied by

Equation (3.3b) is another precaution taken against the undesired

minimization of forced response energy. In other words, the first part

of the cost function tries to assure the concentration of the K-pulse

response energy in the time interval [O,TL] at each combination used in

the K-pulse synthesis procedure. The second part of the cost function

directly helps the minimization of late-time response energy. As a

matter of fact, the cost function suggested by Fok et al. is a special

case of Equation (3.4) for a-O, b-1, g1.1 and 11. As the last comment

on the cost function, it should be noted that using more than Just one

combination in the K-pulse synthesis procedure complicates the

mathematical derivations and increases the computation time, but it is

a vital necessity in the case of complicated targets such as aircraft,

land vehicles and ships. Use of this approach leads to a self-

correcting synthesis problem in the sense that an inaccurate cut-off

time assumption or missing some weakly excited poles at one combination

results in an improper zero pattern of the K-pulse spectrum and

reflects on the other combinations as an excess late-time energy. A

satisfactory convergence is obtained only when the K-pulse works well
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at all of the synthesis combinations. Practically, it seems difficult

to consider more than five combinations for K-pulse synthesis and two

or three combinations are found to be sufficient in most of the

applications when the aspect angles are chosen to be far apart.

To this point the problem is formulated in general terms without

specifying the optimization variables explicitly. The next step is to

choose a convenient mathematical representation for the continuous part

of the K-pulse model. The representation suggested by Fok et al. was

based on an expansion in terms of impulsive basis functions which was

equivalent to approximating k c(t) by its equally-sampled values as

indicated in Equation (2.3). In this report, two types of

representation will be demonstrated; first a discrete representation

which is conceptually the same as the one used by Fok et al., secondly

a continuous representation in terms of Legendre polynomials which is

suggested for the first time in this chapter.

The expression for the K-pulse response of a target was given in

Equation (3.2). It can be rewritten in terms of the convolution

integral as

i fuOin lt'Tk]

r i(t) = hi (t) + kc(z)h i(t-z)dz . (3.6)

If the function kc (t) is going to be represented in a discrete

manner, the continuous-time expression given above should be

approximated by its discrete counterpart to express the cost function
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in terms of the sample values of kC (t). The discrete notation to be

used in the rest of the derivations vill be

xX(t) IJ-1,2,.... (3.7a)

vhere x(t) stands for kC(t), h i(t) or r (t); and

Tk
N- (3.7b)

vith Tk being the K-pulse duration, and N the number of equally-spaced

samples of the function kc (t). Using this notation, an arbitrary
i

sample of the K-pulse response, rj, can be approximated as

Min[ 'J 1
i h+ k c hi

rj .h + r m -~ (3.8)

m.i

where the summation term is simply a rectangular-segments approximation

to the convolution integral given in Equation (3.6). This

approximation can be improved using the trapezoidal rule or Simpson's

rule [37). While the use of Simpson's rule is not preferred for the

sake of simplicity, the trapezoidal rule can be applied easily by

dividing the end sample values of k c (t) and hi (t) by a factor of two in

Equation (3.8).
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The discrete approximation of the cost function, 3, can be

expressed implicitly in terms of the unknown K-pulse samples,
c C C

k , k2, ... , k_ as

N N -i

3rajwOi[ L](r (r' )2] + b g i (ri) 2  (3.9a)

i-1jJ1 JJ-
L

where

N TL  +1 (3.9b)

and

T
N max 1  (3.9c)m

with Tmax being a sufficiently long time duration beyond which the

target response can be assumed to be zero for all practical purposes.

The K-pulse waveforms to be demonstrated in the next chapters are

synthesized by minimizing this cost function using the Fletcher-Powell

steepest descent algorithm [38] which requires the computation of a

gradient vector as

2 N1

where 'T' denotes the transpose operation. An arbitrary element of

this vector can be expressed as
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Ni N I
m r ~ Pr riIr

a! . 2a I Ji L n i +

nk i-i1

+ 2b Ni ::7 r(3.l1la)
Ni

where

Ni-I

I (ri) 2  (3.11b)

J-1

Nm

- Z r~) 2 (3.11c)

and

J-n+r , if n _< min(N,J)
J (3.11d)

nk otherwise

for n=1,2,...,N.

Use of this discrete mathematical representation for the

continuous part of the K-pulse leads to a relatively simple formulation

which is also suitable for computer simulation. On the other hand,

this representation may require a large number of optimization

variables, which are equal to the number of K-pulse samples. This

problem may be partially solved by using some other basis functions to
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represent the function, kC(t). A possible approach in this direction

will be described in the following section.

B. K-PULSE ESTIMATION USING LEGENDRE POLYNOMIALS

One of the basic features of a K-pulse waveform is that it is a

time-limited function. Therefore, the continuous part of the K-pulse

can be represented in terms of a basis of continuous functions defined

on a compact support [39-41). The set of Legendre polynomials 142] is

such a candidate basis being a complete and orthogonal set of

continuous functions over the closed interval [-1,1]. Since, the

interval of definition in the K-pulse synthesis problem is [O,TkI, a

modified version of the Legendre polynomials will be utilized as

Pn(t) = Pn(z)1 2 (3.12a)

T k

or

n

m=0

for

t 4 o,T k] (3.12c)

where (P n(z))W is the set of original Legendre polynomials and
In=0

(P (t)1[. is that of modified Legendre polynomials obtained via the
n0,

time-scaling rule
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2 t-1 . (3.12d)

The definition and the orthogonality properties of the original and

modified Legendre polynomials are given in Appendix D.

The mathematical representation of the K-pulse can be given as

a

k(t) a S(t) + Dn P(t) (3.13)

n-O

where the summation term stands for the function, kC(t), and the D's

are the expansion coefficients to be determined. Using Equations

(3.2b), (3.12b) and (3.13), the K-pulse response is given as follows:

n

n-O mO

or
- n

I i ni
r (t) - h (t) + / Dn T at Bt(tm) (3.14b)

n-O mO

where

Bi (tm) = h1 (t-) 4-1)m d1l . (3.14c)

0

Then, the unknown expansion coefficients can be estimated by minimizing

the cost function, J, defined in Equation (3.3). The gradient vector
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of this cost function with respect to the optimization variables, Dn 's,

is given as

where an arbitrary element JlBDp of this vector can be computed as:

J =]2a 1L 2 ri(t) dta L iT ]
p ip L P

+ 2b gi i i Mt D dt (3.16a)

with

P
rD(t) , Bi (t,m) (3.16b)

where and are defined in Equations (3.5a) and (3.5b),

respectively. The expressions derived to this point need to be

approximated by their discrete time counterparts for the purpose of

computer simulation. Using the discrete notation defined in the

previous section

NP n

rj = h + Dn T anm Bi(Jm) (3.17a)
n=O m=O

where
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min ,N)

B (j,m) - -C h)- 1]m  (3.17b)

q=1 jq+i Rk

and

N mN 1-i
II5p 2a  ri M a J V

W- (0 ZpDp 11 3.7c

with
b Bp E(J .) (3.17d)

DpP Bj (P=O(.1d

and the approximate cost function, 3, is given by Equation (3.9). The

approximate energy terms q and q are as defined in Equation (3.11) in

the previous section. It should also be noted that the maximum order

of the modified Legendre polynomials to be used in the synthesis

procedure must be limited to a sufficiently large finite integer for

practical purposes. This parameter is denoted as NP in Equation

(3.17a). The K-pulse synthesis examples to be demonstrated in Chapters

IV and V show that use of a highly truncated set of Legendre

polynomials with NP-5 is sufficient for the K-pulse synthesis of thin

wires and spheres; and for the case of a model ship, NP-9 turns out to

be an adequate choice for satisfactory results. In other words, the

related optimization problem generally requires a substantially smaller

number of variables when a Legendre polynomial basis is utilized in the
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K-pulse formation procedure as an alternative to a discrete basis

described in Section A. Therefore, the Legendre polynomial approach

leads to a faster K-pulse synthesis algorithm in most cases.

The problem of K-pulse synthesis is mathematically formulated and

tvo types of representations for the K-pulse vaveform are described.

It is also noted that the K-pulse duration, Tk, and the cut-off times,

TL , need to be pre-estimated properly. There appears to be no

straightforvard way of estimating these parameters, especially for

complicated target geometries. Several rules of thumb are discussed in

Appendix A.

C. TAI IDOW FICATIO0

The target identification scheme employed in this report requires

a "K-pulse library" vhich consists of the K-pulse waveforms of various

candidate targets in a class of interest. All of these K-pulses must

be synthesized in advance and stored in computer files to create this

library. When an "unknovn" object is detected by radar, the measured

impulse response is digitally convolved with each of these K-pulse

waveforms to compute the corresponding target responses. The object is

identified as one of the library targets whose response exhibits the

shortest time duration or more realistically for noisy data, has the

lovest percentage of late-time response energy. The number and types

of the targets included in the K-pulse library are determined by the

specific needs of the target identification systems.

The most important feature of this identification approach is that

it does not require sophisticated signal processing or information
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extraction from the received radar signal. The identification

procedure is simply the numerical computation of the outputs of a

parallel bank of digital filters characterized by the pre-synthesized

K-pulse vaveforms. The identification decision can be made by

comparing the plots of either the resulting response vaveforms or the

related normalized instantaneous energy functions.

Comparison of target responses for identification purposes

naturally follovs from the key idea of the K-pulse theory that the

response of a target to its "matched" K-pulse should be time-limited at

all aspects and radar polarizations. But, this condition can only be

met theoretically if the "unique" K-pulse of the target is available.

It has been repeatedly indicated that the K-pulse synthesis technique

introduced in this report as well as the formerly suggested ones are

useful to obtain approximate K-pulse vaveforms as a result of partial

natural mode annihilation, vhich may fail to produce absolutely time-

limited target responses at all combinations. Consequently, it is more

realistic to expect a reduced but non-zero amount of natural response

energy under the K-pulse excitation at not all but most of the

combinations of aspect and polarization. This situation occurs most

frequently in the case of geometrically complicated targets due to the

difficulties of cut-off time estimations as mentioned earlier. Also,

in almost all of the practical cases, the measured unknovn signal is

contaminated by noise that may cause a substantial amount of

uncertainty or even false results in target identification. Clearly,

the signal-to-noise ratio (SNR) gets smaller at the tail of the target

response vhere the noise energy is likely to be comparable to the
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signal energy. In other words, the late-time portion of the target

response, whose magnitude is expected to be minimized to very small

finite values under the matched K-pulse excitation, is effected most in

the existence of noise energy. For a low-0 target, this problem

becomes much more serious because the natural response dies out very

quickly providing only a small amount of natural response related

energy for the late-time minimization. As a result, even a little

noise energy becomes sufficient to make the identification of low-Q

targets impossible on the basis of target response comparisons.

The use of normalized instantaneous response energy functions

instead of response waveforms themselves is suggested and used in this

report for the purpose of target identification. The definition of

instantaneous energy function is given as

jt x(t) x*(t) dt (3.18a)

-9

where x(t) is an arbitrary time function and the superscript "*"

denotes the complex conjugate operator. Assuming that x(t) is real and

causal, this expression can be rewritten as

txt)=I x(t)]2 dt (3.18b)

and the total energy of x(t) is
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x lim '(t) (3.18c)
t .-P

or

-J [x(t)]2 dt . (3.18d)

Obviously, ex(t) is a positive-valued increasing function and

xapproaches the asymptotic maximum value of F;. Furthermore, the energy

distributions of different functions can be compared in the most

convenient way when the corresponding instantaneous energy functions

are normalized as

"r(t) 1 l o Ix(t)12 dt (3.19a)

or

[x(t) 2 dt0 (3.19b)
4W [x(t)]2 dt

where the total normalized energy, , becomes unity.

The target identification examples to be given in Chapters IV

through VII for various classes of targets mostly utilize the

comparison of the normalized response energy curves of the unknown

target under the excitation of library K-pulse. The response energy

curve that corresponds to the matched K-pulse is expected to lead other

curves, especially at late times in the sense that it reaches high

energy levels earlier than the normalized response energy curves which
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correspond to the mismatched K-pulses. Appendix B provides further

discussion on hov to interpret the normalized energy curves in various

situations to make an identification decision.
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COlAPTER IV

APPLICATIONS TO GEOMETRICALLY SIMPLE TARGETS

Although the main goal of this report is to extend the K-pulse

applications to geometrically complicated targets, the suggested

K-pulse estimation and target identification techniques need to be

tested first on simple targets for two reasons; first, the scattering

mechanisms of targets such as a conducting sphere [43-47] and a

conducting linear thin-wire [48-501 have been studied extensively in

the literature. Their impulse response waveforms can be generated by

computer programs, if not available via measurements, and their

dominant pole values are already known. Therefore, such targets are

valuable tools in justifying the validity of new proposed K-pulse

techniques, especially through comparison of the actual pole values

with those which are extracted as the zeros of the synthesized K-pulse

spectra. Secondly, application of the K-pulse estimation and target

identification techniques to simple geometries helps one to understand

the basic phenomena and the limitations of these techniques apart from

some specific complications that may be caused by complex geometrical

features. In this chapter, two objects with simple geometries are

considered as radar targets; a conducting linear thin-vire which is a

very high-Q object, and a conducting sphere which shows the typical

features of lov-Q radar targets.
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A. APPLICATIONS TO CONDUCTING LINEAR THIN-VIRZ

In this section the test target is chosen to be a conducting

linear thin-wire of length 12 meters and length-to-diameter ratio of

2000. The K-pulse estimation technique formalized in Chapter III is

applied to this target, first using a discrete representation for the

continuous part of the K-pulse vaveform and then using a Legendre

polynomial expansion. Finally, the K-pulse waveforms of two other

conducting linear thin-wires, with different lengths but the same

length-to-diameter ratios, will be generated to construct a K-pulse

library and to demonstrate several identification examples. The

original test wire is going to be referred to hereafter as U1 with

L -12m and L1/d1 .2000.

1. K-Pulse Estimation Using a Discrete Representation

The general model of the K-pulse was given in Equation (3.1) as

k(t) = 8(t) + kc(t) for t e [0,Tk] . (4.1)

In this application, the K-pulse duration is estimated to be 2L1 /c = 80

ns (nanoseconds); i.e., twice the length of the wire divided by the

speed of light in vacuum. The function kC(t) is approximately

represented by its equally-spaced sample values; kc, k, ... , k for

N=100. The initial estimate of each sample value is taken to be unity.

The discrete cost function, J, as specified in Equation (3.9), is

minimized for a-1, b.0 and 1=1 to determine the optimal values of the
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K-pulse samples. Since the target has a simple geometry, a single-

combinational analysis is found to be sufficient. The backscattered

frequency data at #=30* (measured from the axis of the wire) for

#-polarization are generated from a moment method solution 150] over

the frequency range 2-(2)-256 MHz to be used for K-pulse estimation.

The backscattered impulse response of V1 at this combination is

obtained using an inverse fast Fourier transformation (IFFT) after

weighting the frequency data by a low-pass Banning window function to

reduce the Gibb's phenomena [51,521. The cut-off time, TL, of the cost

function is set to 100 ns. Since the target is a substantially high-Q

object, the initial amount of response energy beyond this cut-off time

is reasonably large. The value of the cost function is reduced from

about 0.26 to 2.4 x 10-3 in 20 iterations of the Fletcher-Powell

optimization algorithm. The resultant approximate K-pulse vaveform is

shown in Figure 4.1*. The impulse response and the optimized K-pulse

response of V1 at #=300 are plotted together in Figure 4.2a where both

waveforms are normalized to have unit total energy in the time interval

[0,500 ns] to provide a meaningful comparison. As seen in this figure,

the time span of the normalized K-pulse response is about 100 ns as

dictated by the pre-estimated cut-off time. The normalized energy

function of the impulse response and that of the K-pulse response are

also plotted in Figure 4.2b to compare the time spans of these two

vaveforms on the basis of their energy distributions.

* All the figures and tables are collected at the end of the chapter
for convenience.
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To justify the claim that the K-pulse waveform presented in Figure

4.1 is indeed an aspect-invariant descriptor of the wire V1 , the target

response must also turn out to be time-limited at other aspect angles.

Two of these cases are demonstrated in Figures 4.3 and 4.4 at aspect

angles of 600 and 900, respectively. Both of these figures show that

the corresponding K-pulse responses are time-limited, as expected. The

validity of the K-pulse synthesis result is also justified in a manner

which does not leave any doubt via the comparison of two sets of wire

poles; one is computed [21 from a moment method solution for the first

six pole pairs of the wire with L/d=2000 and the other set is extracted

as the zeros of the Laplace transform of the K-pulse shown in Figure

4.1. These sets of values are presented in Table 4.1 showing a very

good agreement with each other.

2. K-Pulse Estimation Using a Legendre Polynomial Representation

The K-pulse estimation technique using an expansion in Legendre

polynomials is formalized in this report for the first time and needs

to be tested for targets of simple geometries before being applied to

complicated cases. For this reason, application to the conducting

linear thin-wire is pertinent.

The target and data to be used in this example are the same as

those utilized in the previous demonstration. The K-pulse of the wire

V is going to be synthesized in the form

0

k(t) = 6(t) + T Dn Pn(t) for t c [O,Tki (4.2)

n.0
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vhere the P n's are modified Legendre polynomials and the Dn'S are the

expansion coefficients to be determined. The K-pulse duration is 80 ns

as in the previous example. The infinite set of Legendre polynomials

is truncated at the maximum order of five for practical reasons, as

explained in Chapter III. The K-pulse synthesis aspect is chosen to be

.60 and the cut-off time is set at 115 ns. The cost function j of

Equation (3.9) is minimized for the case a-O, b-i and I-1. The

synthesis aspect and some of the optimization parameters are

intentionally chosen to be different from those used in the previous

example to see if they have any crucial effect on the synthesis

procedure. As a result of only ten iterations of the minimization

algorithm, the K-pulse waveform shown in Figure 4.5 is constructed from

the optimized values of the expansion coefficients. As a matter of

fact, only the first five of these coefficients are found to be

important in the expansion as shown in Table 4.2 (higher order Legendre

polynomials would be included in the expansion if any convergence

problem occurred in the synthesis procedure indicating that the present

representation was not adequate). The normalized impulse response and

K-pulse response of V1 at f-600, the synthesis aspect, are plotted

together in Figure 4.6a. The corresponding normalized energy curves

are shown in Figure 4.6b. The comparisons of the impulse response and

K-pulse response at two non-synthesis aspects, 300 and 900, are given

in Figures 4.7 and 4.8, respectively. Although these results are not

as perfect as those presented in Figures 4.2 through 4.4, they are

still very satisfactory for all practical purposes. If a higher number

of iterations was allowed in this example, better results could be
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obtained, but the present results are quite satisfactory as they stand

and it seems that there is no need to keep minimizing the cost function

at the expense of more computer time. This conclusion is supported by

the results presented in Table 4.3, where the pole values of the target

as extracted from the K-pulse waveform of Figure 4.5 are found to be in

a good agreement with those pole values calculated from a moment method

solution. It should also be noted that the K-pulse waveform of the

wire, W1 , presented in Figures 4.1 and 4.5 are similar but not exactly

the same, reflecting the fact that these waveforms are two different

approximations to the theoretically "unique" K-pulse whose spectrum

zeros are exactly the same as the poles of V1. In practice, any one of

these approximate K-pulses is acceptable and useful in target

identification as will be demonstrated next.

3. Target Identification

In this section, a K-pulse library of three conducting cylindrical

thin-wires, to be called U1, W2 and W3, is formed for target

identification purposes. The geometrical features of these wire

targets are summarized as

U1: L1 - 12 m. ,d 1 = 6 mm.

W2 : L2 = 10.8 m., d = 5.4 mm.

W3 : L 3 - 13.2 m., d3 = 6.6 mm.
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where all have the same length-to-diameter ratio of 2000. The

dimensions of the targets U2 and U3 differ from the dimensions of 1

only by -10 and +1OZ, respectively. The first target, U1 , is the one

for which two approximate K-pulse waveforms were already synthesized

via different approaches and presented in Figures 4.1 and 4.5. The

latter K-pulse result which was synthesized using the Legendre

polynomial approach is going to be utilized here for target

identification. The K-pulse waveforms of the vires U2 and U3 can be

directly constructed from the K-pulse of U1 by re-scaling the time-axis

and the K-pulse vaveform amplitude since all three wires have the same

basic geometry with L1/d1 = L2/d2 = L3/d3 - 2000. The resultant K-

pulse waveforms kW2 (t) and k.3 (t) as well as the originally synthesized

K-pulse vaveform k 1(t) are plotted together in Figure 4.9. The zeros

of the Laplace transforms K.2 (s) and Kw 3 (s) on sL2/c and sL3/c scales,

respectively have the same numerical values as the zeros of KW (s)

which are tabulated on a sL1/c scale in Table 4.3.

In the folloving identification examples, the "unknown" target is

the wire U1. Figure 4.10a shows the response waveforms of W1 , at 300

aspect angle, to the library K-pulse kW 1l(t), k2 (t) and kW3 (t). The

corresponding normalized response energy curves are plotted in Figure

4.lOb. The comparison of response waveforms clearly shows that the

magnitude of the "matched" target response is much smaller than the

magnitudes of the "mismatched" target responses beyond 80 ns. The

corresponding energy plot makes the identification decision even easier
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in favor of the library target W1 whose K-pulse waveform leads to that

normalized response energy curve which reaches the maximum energy level

much earlier than the others. In the second identification example,

the aspect angle is 600. It is demonstrated in Figure 4.11a that

responses of the "unknown" target to the K-pulses kW 2(t) and kV (t)
2 3

keep ringing in time but its response to the K-pulse kV 1(t) becomes

approximately zero beyond 110 ns. Consequently, the unknown target can

be identified as V V Also, the normalized energy curve related to

kVl (t) reaches the total energy level about 350 ns earlier than the

"mismatched" energy curves as shown in Figure 4.11b. Similar

identification results at a 900 aspect angle are demonstrated in Figure

4.12a comparing the responses of the target (W1) to the library K-

pulses, and in Figure 4.12b using the associated energy curves. Again

the target is identified to be W1 without any uncertainty.

B. APPLICATIONS TO CONDUCTING SPHERE

Most of the geometrically complicated targets to be studied later

in this report are also low-Q objects for which the K-pulse estimation

and target identification problems turn out to be very delicate. It is

reasonable therefore to study these problems for a very low-Q but yet

geometrically simple target such as a conducting sphere to isolate the

practical difficulties caused only by the low-Q nature of radar

targets.
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1. K-Pulse Estimation Using a Discrete Representation

The target of this section is a conducting sphere whose diameter,

d, equals ten inches. (It is referred to as the sphere, S2' in Section

B.3 of Chapter IV.) An approximate K-pulse waveform is synthesized

from the backscattered impulse response of the sphere where the

original frequency data are generated by a computer program for the Hie

series over the frequency band [0.05-10 GHz] with 0.05 GHz frequency

steps. The K-pulse duration is chosen to be 2.8 ns which is

approximately equal to nd/c, that is, the circumferential path length

of the sphere divided by the speed of light in vacuum. The cut-off

time is set at 3.5 ns which is roughly specified by the sum of K-pulse

duration and the transit time, d/c, for the target diameter. The

assumption here is that the forced response of the sphere to the K-

pulse vaveform ends before the cut-off time beyond which only the

natural response may exist.

The continuous part of the K-pulse model in Equation (4.1) is

represented by 146 equally-spaced samples which are all initially

assumed to be unity. The cost function of Equation (3.9) is minimized

to find the optimal values of these unknown samples, with a.l, b.0 and

I=1. Since the conducting sphere is a very lov-Q target, the initial

percentage energy of the target response remaining beyond the cut-off

time is found to be very small, on the order of 10-3 . This value of

the cost function is decreased about one thousand times, to 1.15 x

10-6 , in fifty iterations of the Fletcher-Powell steepest descent

algorithm. The resultant K-pulse waveform is shown in Figure 4.13.

The impulse response and the optimized K-pulse response in the
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backscatter direction are plotted in Figure 4.14a and a magnified

version of this plot is presented in Figure 4.14b to shov the important

late-time variations in detail. These vaveforms are both normalized to

have unit total energies so that the comparison of their amplitudes is

meaningful and reveals that the time span of the K-pulse response is

about 3 ns shorter than that of the impulse response. Theoretically,

the impulse response is of infinite duration but as seen in Figure

4.14b, it can practically be assumed zero beyond 6.4 ns. The energy

content of the optimized backscattered K-pulse response is concentrated

in a shorter time interval as implied by Figure 4.14c vhere the

normalized energy curve of the K-pulse response reaches high energy

levels (after 75%) earlier than the energy curve of the impulse

response. This is the result of natural mode annihilation under K-

pulse excitation. This statement is also verified by the agreement

betveen the approximate sphere poles, extracted from the synthesized K-

pulse vaveform, and the true pole values of the sphere as presented in

Table 4.4. The synthesized K-pulse vaveform is also tested at some

other combinations of aspect and radar polarization to justify the

claim that it is an aspect and polarization invariant descriptor of the

sphere. The pairs of normalized impulse response and the corresponding

normalized K-pulse response vaveforms are plotted (on a magnified

scale) in parts (a) through (e) of Figure 4.15 for the bistatic

angle/radar polarization combinations of 30*/horizontal polarization

(HP), 45°/vertical polarization (VP), 60°/HP, 900/VP and 135°/VP,

respectively. In all these cases, the K-pulse response is found to

have a shorter time span compared to the impulse response, as required.
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2. K-Pulse Estimation Using a Legendre Polynomial Expansion

The target and scattering data employed in this demonstration are

the same as those used in the previous example. This time, the

continuous part of the K-pulse is represented by a truncated expansion

of modified Legendre polynomials (up to order five) over the interval

[0,2.8 ns]. With a cut-off time of 5 ns, the cost function is

minimized to obtain the optimal values of the expansion coefficients.

As a result of fifteen iteration steps, these values are optimized as

shown in Table 4.5 where the coefficient of the fifth order modified

Legendre polynomial is found to be negligible as compared to the

others. The corresponding K-pulse waveform is constructed using

Equation (4.2) and plotted in Figure 4.16. The normalized impulse

response and K-pulse response waveforms in the backscattered direction

are shown together (with a magnified scale) in Figure 4.17a where the

latter waveform becomes zero about 3 ns earli1 than the former one.

The associated normalized energy curves are shown in Figure 4.17b,

which are separated from each other at high energy levels with the

energy curve of the K-pulse response leading that of the impulse

response. In parts (a) through (c) of Figure 4.18, the synthesized

K-pulse is tested for three combinations of bistatic angle/radar

polarization, 300/HP, 900/VP and 120 0/HP, respectively. Finally, Table

4.6 contains the approximate sphere poles which are estimated from the

K-pulse shown in Figure 4.16. As compared to the results of pole

estimation shown in Table 4.4, this new set of results approximates the

dominant poles of the sphere much closer. On the other hand, the

results of Table 4.4 for higher order poles look better. The choice of
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the cut-off time seems to be the most important factor in determining

how closely the zeros of the K-pulse spectrum approximate the actual

target poles. The dominant poles are approximated much better if the

cut-off time is chosen very late (5 ns for the results of Table 4.6)

since the interference from the forced response component is almost

completely avoided. However, the natural modes of the less dominant

poles beyond such a late cut-off time are very small, so such pole

values cannot be approximated as well as the dominant ones.

3. Target Identification

In this section, a K-pulse library of three conducting spheres,

Sip S2 and S3 is formed for identification purposes. The diameters of

these spheres are

Si: d1 - 5 inches

S2: d2 - 10 inches

S3: d3 = 20 inches.

The target S2 is the same one studied in the last two examples. The

approximate K-pulse waveform shown in Figure 4.13 is used to

characterize the sphere, S2. The K-pulse waveforms of the spheres, S1

and S3, are constructed by re-scaling the K-pulse vaveform of S2 and

are shown in Figures 4.19 and 4.20, respectively. The examples of

target identification on the basis of "time-limited K-pulse response
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criterion" are presented in Parts (a) through (g) of Figure 4.21 for

different combinations of aspect and radar polarizations in the noise-

free case. The "unknown" target in each demonstration is indicated in

the figure caption. In all of these examples, the response of the test

target to the "matched" K-pulse dies out at an earlier time, as

expected. But as explained in Chapter III, Section C, this target

identification scheme is very susceptible to noise in the case of lov-Q

targets such as the conducting spheres of this section. Therefore, the

alternative target identification approach which is based on the

comparison of normalized response energy curves is much more useful

when the impulse response of the "unknown" target is contaminated by

noise. The next group of examples demonstrate target identification

for various levels of signal-to-noise ratio. The unknown target of

these examples is the sphere, S2* The signal-to-noise ratio (SNR)

level of its backscattered impulse response is adjusted by adding

random Gaussian noise to the real and imaginary parts of the frequency

spectrum independently. Parts (a), (c), (e), (g) and (i) of Figure

4.22 show the normalized responses of S2 to the library K-pulses for

the SNR of infinity (noiseless case), 20 dB, 15 dB, 10 dB and 5 dB,

respectively. Parts (b), (d), (f), (h) and (j) of the same figure

present the corresponding normalized response energy curves for the

same noise levels. As the SNR decreases, comparison of target

responses gives more and more ambiguous results; even at the SNR of 20

dB, it is very difficult to obtain a correct identification of sphere

S2. On the other hand, it is clearly seen that the noise distortion of

the energy curves is extremely slow; even at the SNR of 10 dB, the
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energy plot is still very similar to that of the noiseless case, except

for a dovnvard shift of about five percent and an almost constant non-

zero slope after 3.5 ns due to the added noise. In the extreme case of

a SNR of 5 dB, target responses give no idea about identification but

the associated energy curves are still useful to declare the unknovn

target to be S2.
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Table 4.1

CNR Frequencies (Poles) of the Conducting Thin-Wire W1
(L/d1=2000) is SL1/c Scale

True Values Obtained Approximate Values Extracted
by using the Moment Method (21 from the K-Pulse Shown in Figure 4.1

-0.161 ± j 3.013 -0.178 ± j 2.978
-0.219 j j 6.133 -0.235 ± j 6.089
-0.262 ± j 9.256 -0.311 ± j 9.219
-0.294 ± j 12.383 -0.335 ± j 12.320
-0.320 ± j 15.512 -0.363 ± j 15.472
-0.343 ± j 18.642 -0.397 ± j 18.582

-0.398 ± j 21.710
-0.469 ± j 24.881
-0.437 ± j 28.008

Table 4.2

Legendre Polynomial Coefficients Used to Construct
the K-Pulse Waveform Shown in Figure 4.5

Order (m) Coefficient (D )

0 0.3019
1 -0.0508
2 0.0204
3 -0.0257
4 0.0162
5 -0.0016
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Table 4.3

CNR Frequencies (Poles) of the Conducting Thin-Wire W1
(L1/d1 = 2000) in sL1/c Scale

True Values obtained using Approximate Values Extracted from
the Moment Method [21 the K-pulse shown in Figure 4.5

-0.161 ± j 3.013 -0.149 + j 2.994
-0.219 ± j 6.133 -0.227 ± j 6.025
-0.262 ± j 9.256 -0.317 ± J 9.137
-0.294 ± j12.383 -0.376 * j12.235
-0.320 ± j15.512 -0.427 ± j15.332
-0.343 ± j18.642 -0.474 ± j18.433

-0.514 ± J21.539
-0.563 ± j24.610
-0.604 ± j27.766

Table 4.4

CR Frequencies (Poles) of the Conducting Sphere S2
(2r2=10 inches) in sr2/c Scale

Extracted Values from the K-Pulse
True Values [151 shown In Figure 4.13

-0.500 ± j 0.866 -0.528 ± j 0.843
-0.702 ± j 1.807 -0.723 ± j 1.863
-0.843 ± j 2.758 -0.805 ± j 2.855
-0.954 ± j 3.715 -0.843 ± j 3.838
-1.048 ± j 4.676 -0.860 ± j 4.799
-1.129 ± j 5.642 -0.854 + j 5.727
-1.201 ± j 6.610 -0.880 ± j 6.676
-1.267 ± j 7.580 -0.934 ± j 7.578
-1.327 ± j 8.552 -0.923 ± j 8.491
-1.382 ± j 9.526 -0.876 ± j 9.441

-1.613 ± j14.415 -0.773 ± j14.241

-1.796 ± j19.323 -0.879 ± j19.457

-1.949 ± j24.245 -0.779 ± j24.409
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Table 4.5

Legendre Polynomial Coefficients Used to Construct
the K-Pulse Shown in Figure 4.16

Order (m) Coefficient (D M)

0 0.2252
1 -0.1885
2 -0.1419
3 0.1475
4 -0.0532
5 0.0001

Table 4.6

CNR Frequencies (Poles) of the Conducting Sphere S2
(2r2=10 inches) in sr2/c Scale

Extracted Values from the K-Pulse
True Values [15] shown in Figure 4.16

-0.500 ± j 0.866 -0.496 ± j 0.883
-0.702 + j 1.807 -0.765 + j 1.795
-0.843 ± j 2.758 -0.865 ± j 2.776
-0.954 _ j 3.715 -0.933 ± j 3.752
-1.048 ± j 4.676 -0.983 ± j 4.721
-1.129 _ j 5.642 -1.022 + j 5.684
-1.201 ± j 6.610 -1.054 ± j 6.641
-1.267 + j 7.580 -1.080 + j 7.596
-1.327 ± j 8.552 -1.102 ± j 8.547
-1.382 + j 9.526 -1.121 + j 9.497

-1.613 ± j14.415 -1.191 + j14.225

-1.796 ± j19.323 -1.229 + j18.936

-1.949 ± j24.245 -1.271 + j23.640
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.0 20.00 0.00 60.0 80.00 100.00 120.0
TIME (ns)

Figure 4.1. An approximate K-pulse waveform for the conducting

cylindrical thin-wire W1 (with L=12m and L/d=2000)

estimated from the theoretical backscattered data at

0=300, 0-polarization using a discrete representation for

the continuous part of the K-pulse. (The 6(t) term of

the K-pulse is symbolically shown by the arrow at t=O.)
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(a) Response waveforms

Figure 4.2. Normalized impulse response (...... and K-pulse response

( -) waveforms and their energy curves for the wireW

(due to the K-pulse shown in Figure 4.1) at *=3Q0,

O-polarization.
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(b) Response energy curves

Figure 4.2. Continued.
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TIME (ns)

Figure 4.3. Normalized impulse response ( ...... anid T(-pulse response

)waveforms of the wire W1at ot=600, O-polarization

due to the K-pulse shown in Figure 4.1.
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Figure 4.4. Normalized impulse response ( ...... ) and K-pulse responsc

( ) waveforms of ,I at 6=900. 6-polarization due to

the K-pulse shown in Figure 4.1.
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1o.oo0 20.00 40.00 60.00 80.00 100.00 126.od6
TIME (ns)

Figure 4.5. An approximate K-pulse waveform for the thin-wire V1

estimated from the theoretical backscattered data at

#=600 ,  -polarization using a Legendre polynomial

representation for the continuous part of the K-pulse.

(The 6(t) term of the K-pulse is symbolically shown by the

arrow at t=0.)
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,a) Response waveforms

Figure 4.6. Normalized impulse response (......) and K-pulse response

( ) waveforms and their energy curves for the wire 1

(due to the K-pulse shown in Figure 4.5) at 0=60 0 .

t-polarizat ion.
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(b) Response energy curves

Figure 4.6. Continued.
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Figure 4.7. Normalized impulse response ( ......) and K-pulse response

-)Of W 1 at $=300. *-polarization due to the K-pulse

shown in Figure 4.5.
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Figure 4.8. Normalized impulse response ( ......) and K-pulse response

of) of at *=900. O-polarization due to the K-pulse

shown in Figure 4.5.
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o. . . . . . . . . . . . . . .C

C~i C0

I 0 S

Cf)

20.01, O00 40.00 60.00 80.00 100.00 120.0?

Figure 4.9. K-pulse waveforms of the thin-wires V. C) W2
( ......... ), and W 3 (-- --- ). All t~iree wires have the
same length-to-diameter ratio of 2000 with lengths L1 =12m,
L 2=10.8mi, and L -13.2m. (The 6(t) term of the K-pulse is
symbolically shgwn by the arrow at t=0.)
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(a) Response waveforms

Figure 4.10. Normalized response waveforms and their energy curves for

the wire W, produced by the K-pulses of library targets W
(W ) ( 2 ........), and W --- at 0=300,

2 3
#-polarizat ion.
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(b) Response energy curves

Figure 4.10. Continued.
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TIME (ns)

(a) Response waveforms

Figure 4.11. Normalized response waveforms and their energy curves for

the wire W, produced by the K-pulses of library targets 17

W (4 ....... ), and 14W -*-- at *=60o.
*-polarizat ion.
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(b) Response energy curves

Figure 4.11. Continued.

64



80. 0 100.00 200.00 300.00 400.00 50008

LAJ

L .j 
j

0 0 o0c 66'6 500-00

(a) Response waveforms

Figure 4.12. Normalized response waveforms and their energy curves for

the wire W, produced by the K-pulses of library targets Il
(,W 2 ( ....... ), and W (- . )at *=900,

2 3
*-polarization.
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(b) Response energy curves

Figure 4.12. Continued.

66



0.00 1.00 2.00 3.00 4.00 5.00 6.00S ' 1 II tiIjp i j I I I I . . I i

t1

C-4

0

10 .00 1.00 2.00 3.00 4.00 5.00 6 .0 0 '
TIME (ns)

Figure 4.13. An approximate K-pulse waveform for the conducting sphere
S2 (with 2r2=10 inches) estimated from the theoretical
backscattered data using a discrete representation for the
continuous part of the K-pulse. (The 6(t) term of the
K-pulse is symbolically shown by the arrow at t=0.)

67



0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00
R . . . .I p I . . . . . . . I , , . -. I . , . .- L p S

LaJ

C'4
~~C%)

0'J

TIME (ns

(a) Response waveforms

Figure 4.14. Normalized impulse response (..) and K-pulse response
(-) waveforms and their energy curves for the sphere
S 2at the backscattered direction due to the K-pulse shown
iFigure 4.13.
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(b) A ten times magnified version of part (a)

Figure 4.14. Continued.
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(c) Response energy curves

Figure 4.14. Continued.
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(a) 30*/Horizontal polarization

Figure 4.15. Normalized impulse response (..) and K-pulse response
(-) waveforms of the sphere S (due to the K-pulse
shown in Figure 4.13) for the bisiatic angle/radar
polarization combinations of 300/HP, 45*/VP, 600/HP,
900/VP, and 1350/VP.
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(b) 45*/Vertical polarization

Figure 4.15. Continued.
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(c) 60*/Horizontal polarization

Figure 4.15. Continued.
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(d) 9O0/Vertical polarization

Figure 4.15. Continued.
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(e) l35*/Vertical polarization

Figure 4.15. Continued.
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(a) Response waveforms

Figure 4.17. Normalized impulse response ( ..... ) and K-pulse response
(-) waveforms and their energy curves for the sphere

S2 (due to the K-pulse shown in Figure 4.16) at the
backscattered direction.
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(b) Response energy curves

Figure 4.17. Continued.
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(a) 30*/Horizontal polarization

Figure 4.18. Normalized impulse response (. ) and K-pulse response
(- vaveforms of S (due to the K-pulse shown in

Figure 4.16) for the bistatic angle/radar polarization
combinations of 30*/HP, 90*/VP and 1200/HP.
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(b) 90*/Vertical polarization

Figure 4.18. Continued.
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(c) 120*/Horizontal polarization

Figure 4.18. Continued.
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Figure 4.19. K-pulse waveform of the conducting sphere S (with 2r =5
inches) as constructed from the K-pulse of i shown iC
Figure 4.16. (The 6(t) term of the K-pulse is
symbolically shown by the arrow at t=O.)
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Figure 4.20. K-pulse waveform of the conducting sphere S (with 2r -20

inches) as constructed from the K-pulse of a2shown in
Figure 4.16. (The S(t) term of the K-pulse is
symbolically shown by the arrow at t=O.)
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(a) Response of the test target S1 to the K-pulses of S1 (
S2 ( ....... ) and S3 (-... - at the backscattered direction

Figure 4.21. Examples of target identification in the noise-free case
using the K-pulse waveforms shown in Figures 4.16 (for the
sphere S 2) 4.19 (for the sphere SI) and 4.20 (for the
sphere S3)8
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(b) Response of the test target S 3 to the K-pulses of S (*.)

S 2 (-*- -) and S 3 (- ) at the backscattered direction

Figure 4.21. Continued.
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(e) Response of the test target S 1 to the K-pulses ofS
S (..) and S 3 (- )at 750 bistatic angle, horizontal

polarization

Figure 4.21. Continued.
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(f) Response of the test target S 2 to the K-pulses of S .
S 2 (- and S 3  -- )at 900 bistatic angle, vertical
polarization

Figure 4.21. Continued.

89



~0.0 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.09

LUJ

C-r7"

10.0 10 2.00 3.00 4.00 5.006.9007.00 8.00 9.00 1.0

(g) Response of the test target S 2 to the K-pulses of S(
S 2 (- ) and S 3 (* at 1350 bistatic angle, L'rtical
polarization

Figure 4.21. Continued.

90



0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00
- p I 1 I i I , I I I I I I I I I I I I I I I I I I

Vr)
C-.- .. . . *.t-.-

LJO

'0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00'
TIME (ns)

(a) Normalized response waveforms for the noiseless case (SNR=w)

Figure 4.22. Normalized response waveforms and the corresponding energy
curves of the test target S due to the K-pulses of S1
( ..... ), S2 (- ) and S3 i..) at the backscattered
direction.

91



0.00 0.50 1.00 150 2.00 2.50 3.00 3.50 4.00 4.50 5.00

... .......

u-.J

U -)U-

,=0.60 .~ 5 ~ 00~ 15 2.0 2.04.56i50.0 .

(b) Normalized response energy curves for the noiseless case (SNR=-)

Figure 4~.22. Continued.



0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.0

v. I'

LaJ

000 1.00 2.00 3.00 4.00 5.00' 6.00 7.006 8.006 i.006 10.00'
TIME (ns)

(c) Normalized response waveforms for SNR=20 dB

Figure 4.22. Continued.

93



0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

I t-
I~ ~ i i , i . . . . i . . . . 1 , t ............... ... . . . t . . . . I . .

II4

.- / -7<
C-

_ -
/ "0

LAJ CD qC

-,j

,0.0 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.0e
TiME (ns)

(d) Normalized response energy curves for SNR=20 dB

Figure 4.22. Continued.

04



0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

-)

. . . . . . .. .

LUJ

'0.00 1.00 2.00 3.00 4.00 5.00 6.06 70 8.0 .0 1.0
TIME (ns)

(e) Normalized response waveforms for SNR=15 dB

Figure 4.22. Continued.

95



0.00 0.50 1.00 1.50 2.00 .5 0 3.00 3.50 4.00 4.50 5.00

U-),

>-

C9

LA-,

-AJ

r-,

~000 0.50 1.00 1.50 2.00 250 30 3.0 40 4.0 50

TIME (ns)

(f) Normalized response energy curves for SNR=15 dB

Figure 4.22. Continued.



0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00
.. . I I I I I , . I . . , . I I 

At
C)g

Ck=

I %

'00 .00 2.00 3.00 4.00 5.006 6.006 7.00 8.00 90 100

TIME (ns)

(g) Normalized response waveforms for SNR=1O dB

Figure 4.22. Continued.

97



0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.0

LLJJ

La.Jn

Th .oo 0.50 1.00. 1.50 2. 00 2.50 3.00 3.50 4.00 4.15 0 50d
TIME (ns)

(h) Normalized response energy curves for SNR=1O dB

Figure 4.22. Continued.

98



0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

. .. . . 5

LAJ

V),

0-0
V)I P~

. . i

100 1.0 2 .0J.0 70 .'

'00 10 .0 .0 .0 .0 .000 08.0 9.00 10.00'
TIME (ns)

(i) Normalized response waveforms for SNR=5 dB

Figure 4.22. Continued.

99



0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

. . .. .......

LA',

LUJu~

'90-00 0.50 1.60 1. 50 .2.00 2.50 i.006 .5 4.006 4.-50 5.0e
TIME (ns)

(j) Normalized response energy curves for SNR=5 dB

Figure 4.22. Continued.

100



CHAPTER V

APPLICATIONS TO SHIPS

In this chapter, attention will focus on the application of

K-pulse techniques to naval targets. Two small-scale electroplated

model ships are employed in the demonstrations where no geometrical

features of the actual targets are simplified. The backscattered

frequency data of the model ships, referred to as SH1 and SH2

hereafter, were measured on the Ohio State University Compact RCS

Measurement Range [53] in the presence of a ground plane*. The

frequency span of the data used for both targets is 2 to 8 GHz. The

wavelength at the lowest measurement frequency is 15 cm which is

slightly larger than the lengths of targets SH1 and SH2. This means

that the available scattering data do not span the lover portion of the

resonance region for either target. As discussed in Chapter III, such

data are termed incomplete in this report and may cause uncertainties

in K-pulse estimation. Furthermore, the targets SH1 and SH2 are

relatively low-0 objects with complicated substructures. All these

factors result in a challenging problem of K-pulse estimation and

target identification. In Sections A and B of this chapter, the K-

pulse estimation aspect of the problem is examined, first for the ship

* The ground plane configuration is described in [541.
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SH1 then for SH2. The synthesized K-pulse waveforms are used for

target identification purposes in Section C. The K-pulse vaveform of

the target SH2 is synthesized using the Legendre polynomial basis

functions to demonstrate that this alternative K-pulse estimation

technique can be applied successfully not only to simple targets as

shown in Chapter IV but also to geometrically complicated and low-0

targets such as the model ship, SH2.

A. K-PULSE ESTIMATION FOR TBE MODEL SHIP SH1

The K-pulse estimation technique to be utilized in this section is

based on a discrete representation of the continuous part of the

K-pulse as described in Section A of Chapter III. The continuous

function, kC(t), (see Equation (3.1)) is represented by discrete sample
c c

values k1 , k2, ..., N where N is chosen to be 80. The combination of

aspect and polarization used in the K-pulse synthesis procedure are

00/VP and 800 /VP. The backscattered impulse response waveforms at

these combinations are obtained via inverse FFT of the measured

frequency data which are weighted by a band-limited Hanning window

function prior to transformation. As a result of several pilot runs of

the synthesis program, the K-pulse duration is chosen to be 3L1/c =

0.915 ns where L1 is the length of the model ship and c is the speed of

light in a vacuum. The unknown sample values of kc (t) are estimated by

minimizing the cost function j of Equation (3.9) with a.1, b-O and 1=2.

The pre-estimated cut-off times are 0.65 ns and 0.60 ns at the aspect

angles of 00 and 800, respectively. The resultant K-pulse waveform is

shown in Figure 5.1. Since there is no a priori information available
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on the target poles to be compared with the zeros of the K-pulse

spectrum, the only way of justifying the synthesis result is to check

the K-pulse response at as many combinations as possible for the late-

time response energy reduction. For this purpose, the normalized

impulse response and K-pulse response pairs as well as the

corresponding normalized energy curve pairs of the target SH1 are

plotted in Figure 5.2 through 5.11 at the aspect angles of 0, 150,

300, 450, 60-, 800, 90*, 1000, 1700 and 1800, respectively all for

vertical polarization. Each of these figures has two parts; time

waveforms are plotted in part (a), and the associated energy curves are

shown in part (b). The common result observed in all these figures is

that the K-pulse response of the target is not severely time-limited

but its late-time energy content is reduced as compared to that of the

corresponding impulse response. In other words, at each aspect angle,

the energy content of the K-pulse response is concentrated in a shorter

time interval with respect to the impulse response as a result of

partial natural mode annihilation. The energy plots are particularly

useful for viewing the late-time energy variations, where the

normalized energy curves of the impulse response and K-pulse response

follow a similar path up to a certain high energy level but then the

energy curve of the K-pulse response reaches higher levels earlier than

that of the impulse response. The energy level at which the two curves

start separating from each other varies from one aspect to another, but

remains in the range 0.7 to 0.9, where the value unity corresponds to

the total normalized energy level.
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In summary, the demonstrations presented in Figures 5.2 through

5.11 strongly support the claim that the K-pulse waveform shown in

Figure 5.1 characterizes the target SH1 in an aspect-invariant manner.

As a by-product of the K-pulse estimation procedure, several pole-pairs

of the target SH1 are estimated as zeros of the Laplace transform of

the K-pulse vaveform shown in Figure 5.1. These approximate pole-pairs

(CNR frequencies) are listed in Table 5.1.

B. K-PULSE ESTIMATION FOR THE MODEL SHIP SH2

In this section, an approximate K-pulse waveform of the model

target SH2 will be synthesized using the Legendre polynomial approach

as described in Section B of Chapter III. The K-pulse duration, Tk,

for this complicated geometry is estimated to be 3L2/c - 1.016 ns where

L2 is the length of ship SH2 . The combinations of aspect and

polarization used for K-pulse synthesis are 30*/VP and 100*/VP. The

continuous part of the K-pulse model is represented by an expansion of

modified Legendre polynomials in the interval [0,1.016 ns) (see

Equations (3.12) and (3.13)). The maximum order of the Legendre

polynomials is restricted to five for the first test run of the

synthesis computer program. The optimal values of the expansion

coefficients D0, Di, ..., D5 were searched by minimizing the cost

function j in Equation (3.9) for a=1, b=O, I=2 with the cut-off times

being 1.55 ns and 1.20 ns at the combinations 30*/VP and 100*/VP,

respectively. A satisfactory convergence could not be obtained for

these assumptions. The program was rerun by changing the cut-off time

specifications which did not lead to any improvement. The last two
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expansion coefficients were observed to attain much larger values than

the others possibly indicating that several of the higher order

Legendre polynomials should be included in the mathematical

representation for better results. Then the maximum order of the

Legendre polynomials used in Equation (3.13) was increased to nine

leading to a satisfactory K-pulse estimation result. With the same

parameters and the cut-off times as indicated earlier, minimization of

the cost function generated the optimized values of expansion

coefficients D0, D1, ..., D9 as listed in Table 5.2. The K-pulse

waveform presented in Figure 5.12 is constructed using Equation (3.13).

A subset of target poles extracted as zeros of the K-pulse spectrum is

shown in Table 5.3. The pairs of the normalized impulse response and

K-pulse response waveforms of the target SH2 (under the K-pulse

excitation of Figure 5.12) are given in part (a) of Figures 5.13

through 5.22 for aspects of 00, 100, 300, 450, 600, 800, 900, 1000,

1700 and 1800, respectively for vertical polarization. Also, the

associated normalized energy curve pairs are shown in part (b) of the

same figures. In each of these figures except those for 800 and 90*

cases, it is observed that the late-time energy content of the K-pulse

response is not zero but definitely lower than that of the impulse

response due to partial annihilation of the target's natural modes.

This late-time energy reduction behavior is strongly reflected in the

energy plots by the way that the normalized energy curves of the K-

pulse response lead those of the corresponding impulse responses not

only at high energy levels but t almost all energy levels. On the

other hand, there is no obvious late-time natural response annihilation
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observed at the 800 and 900 cases. It is very likely that the zero

pattern of the synthesized K-pulse spectrum fails to include a complex

pole-pair which is strongly excited at these aspects. However, in

Section C of this chapter, it is demonstrated that identification of

SH2 on the basis of this K-pulse waveform is still possible at 80' and

90° aspect angles despite the relatively poor results of Figures 5.18

and 5.19.

C. TARGET IDENTIFICATION

The K-pulse library of this section is composed of the K-pulse

waveforms of the targets SH1 and SH2 which are shown in Figures 5.1 and

5.12, respectively. Not only are the geometrical features of these

targets quite similar, but their physical dimensions are also in close

proximity. First, a group of demonstrations are presented for the

practically noiseless case since the original data were measured in a

noise-controlled chamber [531. The unknown target of identification

examples given in Figures 5.23 through 5.29 is the model ship SH1 whose

normalized response energy curves under the excitation of its own K-

pulse (matched case) and the K-pulse of the other library target SH2

(mismatched case) are plotted in pairs at 0', 150, 300, 458, 80', 100',

and 1700, respectively for vertical polarization. In these figures,

matched response energy curves are shown by solid lines and mismatched

ones are drawn by dotted lines; the same representation is used in the

rest of the identification examples of this section. At 00, 150, 30'

and 450 aspect angles, the matched energy curve starts leading the

mismatched one after the normalized energy level of about 86%. This
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energy threshold is approximately 90%, 70% and 92% at the aspect angles

80', 1000 and 170', respectively. Consequently, the target SH1 is

correctly identified in all these examples except the 170* case for

which the result has a little ambiguity. It should be noted that in

some cases, the matched energy curve may lead the mismatched one for a

wide range of high energy levels but may fail to do so for a very

narrow energy range just before the maximum (unity) energy level. Such

situations are basically due to either partial natural response

annihilation or noisy variations at the very tail of the impulse

response data which may be coming from measurements or caused by the

numerical data processing used to obtain the time domain data from the

original frequency domain measurement data. An example of this

situation occurs in Figure 5.28, i.e., at the 1000/VP combination where

the mismatched energy curve leads the matched one very slightly after

96% energy level but does not cause an incorrect identification since

the matched energy curve leads to a mismatched one very dominantly in

the energy range from 70% to 96%. Next, the model ship SH 2 is used as

the unknown target of the identification examples (for the practically

noise-free case) demonstrated in Figures 5.30 through 5.37 at the

backscattered aspect angles of 00, 300, 450, 600, 800, 90° , 1000 and

1800, respectively at vertical polarization. In all these figures, the

matched normalized energy response leads the mismatched one not only at

high energy levels but even at mid-energy levels. Therefore, the

target, SH2, can be identified correctly in all cases.

Finally, the noise performance of the target identification scheme

is tested in several cases where the SNR of the impulse response is
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decreased by adding random Gaussian noise to the real and imaginary

parts of the corresponding frequency domain data independently. The

unknown target of the following example is the model ship, SH1 , at

30*/VP combination; parts (a), (b) and (c) of Figure 5.38 show the

matched and mismatched response energy curves of this target for 15 dB,

10 dB and 5 dB signal-to-noise ratio levels, respectively. (A similar

plot for the noise-free case is given in Figure 5.25.) The phase and

amplitude plots of the noisy frequency domain data is shown in part (d)

of the same figure for SNR-5 dB. As the SNR decreases, identification

results deteriorate very slowly and even at 5 dB noise level the

target, SH1, can be identified correctly. In part (c) of this figure,

the matched energy curve starts lagging the mismatched one very

slightly after about 0.75 ns since the K-pulse of the target cannot

annihilate the random variations caused by added noise vhich determine

the late-time behavior of the resultant noisy impulse response after

the actual signal components die out.

Table 5.1

Poles of the Model Ship SH
Extracted from the K-pulse Shown in igure 5.1

109 Nepers/s, GHz Scale sL/c Scale

-0.316 * j 3.148 -0.605 ± j 6.029
-0.397 ± j 4.040 -0.760 ± j 7.737
-0.576 ± j 5.611 -1.103 ± J10.746
-0.518 j j 6.743 -0.992 ± J12.914
-0.551 t J 8.220 -1.055 ± J15.742
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Table 5.2

Legendre Polynomial Expansion Coefficients
for the Continuous Part of the K-pulse shown in Figure 5.12

Order (m) D

0 1.0852
1 -2.6250
2 0.7580
3 0.9085
4 -1.4577
5 5.6933
6 -6.6951
7 2.8000
8 0.1344
9 0.1040

Table 5.3

Poles of the Model Ship SH Extracted from
the K-pulse Shown in ;igure 5.12

109 Nepers/s, GHz Scale in sL/c Scale

-0.486 ± j 2.930 -1.034 ± j 6.235
-0.507 ± j 3.627 -1.079 ± J 7.718
-0.529 ± j 4.318 -1.126 ± j 9.188
-0.577 ± j 5.323 -1.228 ± j11.327
-0.612 ± j 6.349 -1.302 ± j13.510
-0.639 ± j 7.368 -1.360 ± j15.678
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Figure 5.1. An approximate K-pulse waveform of the model ship SH
estimated from the measured backscattered data at O°*VP
and 80°/VP using a discrete representation for the
continuous part of the K-pulse. (The 6(t) term of the
K-pulse is symbolically shown by the arrow at t=O.)
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Figure 5.2. Normalized impulse response (... ) and K-pulse response
(-) waveforms and their energy curves for the target
SF11 at 0*/VP.
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Figure 5.3. Continued.
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Figure 5.4. Normalized impulse response (... ) and K-pulse response
(-) waveforms and their energy curves for the target
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Figure 5.4 Continued.
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Figure 5.5. Normalized impulse response (*.. ) and K-pulse response
(-) waveforms and their energy curves for the target
SH 1 at 450/vp.
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Figure 5.5. Continued.
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Figure 5.7. Normalized impulse response (..) and K-pulse response
(-) waveforms and their energy curves for the target
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Figure 5.7. Continued.
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Figure 5.8. Normalized impulse response (..) and K-pulse response
(-) waveforms and their energy curves for the target
SH1 at 900/VP.
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Figure 5.10. Normalized impulse response (..) and K-pulse response(-) waveforms and their energy curves for the target
SH1 at 1700/vP.
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Figure 5.12. An approximate K-pulse waveform of the model ship SH 2
estimated from the measured backscattered data at
300/VP and 100*/VP using a Legendre polynomial
representation for the continuous part of the K-pulse.
(The 6(t) term of the K-pulse is symbolically shown by the
arrow at t-0.)
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Figure 5.13. Normalized impulse response (..) and K-pulse response
( -) waveforms and their energy curves for the target
SH2 at 00/VP.
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Figure 5.14. Normalized impulse response .. ) and K-pulse response
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SH 2 at 100/VP.
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Figure 5.15. Normalized impulse response (... ) and K-pulse response
(-) waveforms and their energy curves for the target
SH 2 at 300/VP.
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Figure 5.16. Normalized impulse response (*..) and K-pulse response
(-) waveforms and their energy curves for the target
SH 2 at 450/VP.
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Figure 5.16. Continued.
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Figure 5.17. Continued.
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(a) Response waveforms

Figure 5.18. Normalized impulse response .. ) and K-pulse response
(-) waveforms and their energy curves for the target
SH 2 at 800/VP.
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Figure 5.19. Normalized impulse response (..) and K-pulse response
(-) waveforms and their energy curves for the target
SH 2 at 900/VP.
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Figure 5.19. Continued.
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(a) Response waveforms

Figure 5.20. Normalized impulse response (..) and K-pulse response
(-) waveforms and their energy curves for the target
SH 2at 100 0/VP.
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Figure 5.20. Continued.
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(b) Response energy curves

Figure 5.21. Continued.
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(a) Response waveforms

Figure 5.22. Normalized impulse response (..) and K-pulse response
(-) waveforms and their energy curves for the target
SH 2 at 180 0/VP.
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Figure 5.23. Normalized response energy curves of the test target SH1produced by the K-pulses of library targets SH1  -

and SH 2  .)at 00/VP.
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Figure 5.24. Normalized response energy curves of the test target SH1produced by the K-pulses of library targets SH 1 (-
and SW, 2 . at 150/VP.
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Figure 5.25. Normalized response energy curves of the test target SH1
produced by the K-pulses of library targets SH ( )
and SH 2  . )at 300/VP.1
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Figure 5.26. Normalized response energy curves of the test target SH1
produced by the K-pulses of library targets SH1  -

and SH 2  . )at 4501VP.
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Figure 5.27. Normalized response energy curves of the test target SH1
produced by the K-pulses of library targets SH (- )
and SH2 (. ) at 800 /VP.
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Figure 5.29. Normalized response energy curves of the test target SH1produced by the K-pulses of library targets SH 1 (-
and SF12  .) at 170 0/VP.
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Figure 5.30. Normalized response energy curves of the test target SH2produced by the K-pulses of library targets Sil .
and SH 2  -)at 00/VP.
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Figure 5.31. Normalized response energy curves of the test target SH2produced by the K-pulses of library targets SH (.
and SH 2 (- ) at 30*/VP.1
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Figure 5.32. Normalized response energy curves of the test target SH 2produced by the K-pulses of library targets SH1  .
and SH 2 (- ) at 450/VP.
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Figure 5.34. Normalized response energy curves of the test target SH2produced by the K-pulses of library targets SH1 (.
and SH 2 (- ) at 800/VP.
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(a) SNR = 15 dB

Figure 5.38. Normalized response energy curves of the test target SH 1
produced by the K-pulses of library targets SH I(- )
and SH 2  .)for some noisy backscattered data at
300/ VP.
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CHAPM VI

APPLICATIONS TO LAND VIHICLES

In this chapter, K-pulse applications are extended to land

vehicles. The targets used for the demonstrations are electroplated

small scale models of a tank and a personnel carrier which are referred

to as LV1 and LV2, respectively, in the remainder of this chapter. The

geometrical features and overall size of these two model targets are

quite similar except for the long gun barrel of the tank. In Sections

A and B, a discrete representation for the K-pulse model is employed to

estimate the K-pulse waveforms of the targets. The synthesized

approximate K-pulses are utilized in the target identification

demonstrations of Section C. The vertically polarized frequency domain

backscattered data for both targets were measured on the Ohio State

University compact RCS measurement range [531 in the presence of a

ground plane [541 over the aspect angle range from 00 to 90* where the

aspect angle is measured from the major (front-to-end) axes of the

targets. The backscattered impulse response data are obtained via the

standard IFFT of the frequency data which are weighted by a bandpass

Hanning window function over the frequency range 2.0-(0,05)-8.0 GHz.
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A. K-PULSE ESTIMATION FOR THE MODEL TARGET LV1

An approximate K-pulse waveform of the target, LV1 , is synthesized

using the backscattered impulse response data at two combinations;

0/VP and 900 /VP. The K-pulse duration is estimated to be 3L1/c.0.889

ns where L1 is the length of the target including the gun barrel. The

continuous part of the K-pulse waveform is represented by equally-
k ,c ...

spaced samples k1, k V ... 9 with N=77. The optimal values of these

samples are estimated via minimization of the cost function (Equation

(3.9) with a-l, b.0, and 1=2 for the cut-off times 0.9 ns and 0.6 ns at

the synthesis combinations of 0*/VP and 90*/VP, respectively. The

resultant K-pulse waveform is shown in Figure 6.1 which also includes a

unit strength impulse function 6(t), as stated in the general form of

the K-pulse model of Equation (3.1). The zeros of the Laplace transform

of the synthesized K-pulse waveform are listed in Table 6.1, which are

expected to approximate a subset of the target poles in the frequency

range 2 to 8 GHz. To test the aspect-invariant feature of the K-pulse,

the pairs of normalized impulse response and K-pulse response waveforms

as well as the corresponding normalized energy curve pairs are plotted

in Figures 6.2 through 6.6 at the aspect angles of 00, 300, 450, 600

and 90*, respectively for vertical polarization. Late-time response

energy reduction is naturally expected at the 00 and 900 cases which

are the synthesis aspect angles used. Indeed, the normalized energy

curve of the K-pulse response leads that of the impulse response at

almost all energy levels in part (b) of Figures 6.2 and 6.6. The late-

time target response energy reduction is also observed in part (a) of

all figures at varying extents. At 30* aspect angle, the result looks
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quite satisfactory while for the 600 case, it turns out to be

relatively poor. The best result is observed in Figure 6.4 at a 45*

aspect angle although it is not one of the synthesis aspects used.

B. K-PULSE ESTIMATION OF THE MODEL TARGET LV2
The K-pulse waveform of the target LV2 is estimated using the

backscattered data at 300/VP and 90'/VP. The K-pulse duration is

estimated to be 3L2/c = 0.572 ns where L2 is the length of the target.

The continuous part of the K-pulse is represented by equally-spaced

samples kc, k . k with N-50. The cut-off times are set to 0.85

ns at 30' aspect angle and 0.65 ns at 90' aspect angle. Minimization

of the cost function, 3, (with a=1, b=0 and I=2) led to the approximate

K-pulse waveform shown in Figure 6.7. Laplace domain zeros of this K-

pulse are numerically extracted and listed in Table 6.2. The

normalized impulse response and K-pulse response pairs are plotted

together in part (a) of Figures 6.8 through 6.12 at aspect angles 0',

300, 45', 60' and 90', respectively, for vertical polarization. The

corresponding energy curve pairs are also shown in part (b) of the same

figures. Results are found to be satisfactory in all these cases,

especially at the 45' and 900 aspect angles.

C. TARGET IDENTIFICATION

The K-pulse library of this section is composed of the approximate

K-pulse waveforms of the targets LV and LV The test target of the

identification examples shown in Figures 6.13 through 6.17 is the model

tank, LVI, at aspect angles of 00, 30', 45', 60' and 90', respectively.
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In all these demonstrations, the test target is identified correctly.

The normalized energy curve of the matched target response leads that

of the mismatched one over the energy range 82% to 98% at 00; 76X to

99% at 300; 75% to 97% at 450; 52% to 90% at 600; and 93% to 99% at 900

cases. The average energy difference of the matched and mismatched

curves is about 2% at a 900 aspect angle but still enough for a correct

identification since the mismatched curve never goes above the matched

one at any energy level. On the other hand, the mismatched energy

curve of the 600 case is observed to be leading the matched one

starting from the 90% energy level by about 2% average energy

difference. However, this variation is compensated by the reverse

situation observed over the 52% to 90% energy range where the average

difference between the energy curves is about 10% of the total energy.

Next, the model carrier, LV2, is chosen to be the test target of

the demonstrations presented in Figures 6.18 through 6.22 at the aspect

angles 00, 300, 450, 600 and 900, respectively for vertical

polarization. At the 00 case, the matched and mismatched energy curves

follow each other very closely causing an ambiguity in the

identification. At 300 aspect angle, the matched energy curve reaches

all energy levels earlier than the mismatched one with an average

energy difference of about 6% over the energy range 88% to 98%. The

best identification result is observed at 450 aspect angle as shown in

Figure 6.20. Another satisfactory result is presented in Figure 6.21

for the 600 case. The target, LV2, is again identified with certainty

in Figure 6.22 at 900 aspect angle where the matched energy curve

reaches all energy levels earlier than the mismatched curve by an
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average energy level difference of about 9Z over the range 75% to 96Z.

In summary, the overall result of Figures 6.13 to 6.22 leads to a

correct identification score of 90%.

Finally, the noise performance of the identification scheme is

checked in Figure 6.23 where the test target is LV2 at a 900/VP

combination. A set of noisy data is simulated from the original

(measured) scattered data as explained in Appendix E. Assuming the SNR

of the original data to be infinite, the SNR of the noisy data is set

to 15 dB, 10 dB and 5 dB in parts (a), (b) and (c) of Figure 6.23.

Even at the 5 dB SNR level for which the noisy data spectrum is shown

in part (d) of the same figure, a correct identification is still

possible.
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Table 6. 1

Poles of the Model Tank LV
Extracted from the K-pulse Shown in hgure 6.1

109 Nepers/s, GHz Scale sL1/c Scale

-0.282 ± J 3.522 -0.525 ± J 6.558
-0.483 ± j 4.445 -0.899 ± J 8.276
-0.384 ± j 5.638 -0.715 ± J10.497
-0.271 ± j 6.762 -0.606 ± J12.590

Table 6.2

Poles of the Model Carrier LV
Extracted from the K-pulse shorn in Figure 6.7

109 Nepers/s, GHz Scale sL 2/c Scale

-0.275 ± j 2.843 -0.329 ± j 3.403
-0.288 _ j 4.068 -0.345 ± j 4.869
-0.442 ± j 5.628 -0.529 + j 6.786
-0.358 ± j 6.941 -0.429 ± j 8.308
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Figure 6.1. An approximate K-pulse waveform for the model tank LV1

estimated from the backscattered measurement data at OO/VP

and 900/VP using a discrete representation for the

continuous part of the K-pulse. (The 6(t) term of the

K-pulse is symbolically shown by the arrow at t.0.)
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(a) Response waveforms

Figure 6.2. Normalized impulse response (..) and K-pulse response
(-) waveforms and their energy curves for the model
tank LV I at 0O/VP.
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(b) Response energy curves

Figure 6.2. Continued.
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(a) Response waveforms

Figure 6.3. Normalized impulse response (... ) and K-pulse response
(-) waveforms and their energy curves for the model
tank LV 1at 30*/VP.
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(b) Response energy curves

Figure 6.3. Continued.
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(a) Response waveforms

Figure 6.4. Normalized impulse response (..) and K-pulse response
(-) waveforms and their energy curves for the model
tank LV Iat 45*/VP.
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(b) Response energy curves

Figure 6.4. Continued.
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Figure 6.5. Continued.
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(a) Response waveforms

Figure 6.6. Normalized impulse response (*.*) and K-pulse response
(-) waveforms and their energy curves for the model
tank LV 1 at 900/VP.
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(b) Response energy curves

Figure 6.6. Continued.
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Figure 6.7. An approximate K-pulse waveform for the model carrier LV 2
estimated from the backseattered measurement data at
30/V£ and 90/VP using a discrete representation for the
continuous part of the K-pulse. (The 6(t) term of the
K-pulse is symbolically shown by the arrow at t=O.)
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(a) Response waveforms

Figure 6.8. Normalized impulse response (..) and K-pulse response
(-) waveforms and their energy curves for the model
carrier LV 2 at 00/VP.
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(a) Response waveforms

Figure 6.9. Normalized impulse response ( ..... ) and K-pulse response
(-) waveforms and their energy curves for the model
carrier LV2 at 30

0/VP.
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Figure 6.9. Continued.
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Figure 6.10. Normalized impulse response (..) and K-pulse response
(-) waveforms and their energy curves for the model
carrier LV 2 at 45*/VP.
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(a) Response waveforms

Figure 6.11. Normalized impulse response (..) and K-pulse response
(-) waveforms and their energy curves for the model
carrier LV 2 at 600/VP.
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Figure 6.11. Continued.
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(a) Response waveforms

Figure 6.12. Normalized impulse response (..) and K-pulse response
(-) waveforms and their energy curves for the model
carrier LV 2 at 900 /VP.
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Figure 6.12. Continued.
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Figure 6.13. Normalized response energy curves of the test target LV 1
produced by the K-pulses of library targets LV (
and LV 2  . )at i","JP.1
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Figure 6.14. Normalized response energy curves of the test target LV1produced by the K-pulses of library targets LV (-
and LV 2  .)at 300/VP.1
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Figure 6.15. Normalized response energy curves of the test target LV1produced by the K-pulses of library targets LV1 (-
and LV2  . at 450/VP.

201



0.00 0.50 1.00 1.50 2.00 2.50 3.00

C.D.

~~0.0O 0~.50..0.1.0..0.2.0..0
TIELns

Fiue61. NraieArsos nrycre o h ettre V

Figre .16 prduced by spthe -puls ures of ibraryt target LV -
and LV 2  .)at 600/VP.1

202



0.00 0.50 1.00 1.50 2.00

-D

C)8 -8

C) C)

LAJC

Cli -C2

c:w ,O. . . 05010 .O2O
TIM (ns

Fi u e 6 1 . No m l z d r sp n e e e g ur e f t e te t t r e Vprd cd by t e K pu s s o l b ay tag t Van-V t90/P

203)



0.00 0.50 1.00 1.50 2.00 2.50

(-D-

Q-10

LU~
LUJ

<0

M C-4 _C4
=0

CDO.OO.. 0. 0 1.00 1.50 2.00 . .2Ae
TIME (ns)

Figure 6.18. Normalized response energy curves of the test target LVI
produced by the K-pulses of library targets LV1  .
and LV,2 (- ) at 00/VP.
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Figure 6.19. Normalized response energy curves of the test target LV 2produced by the K-pulses of library targets LV (.
and LV 2 (- ) at 300/VP.1
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Figure 6.20. Normalized response energy curves of the test target LV,
produced by the K-pulses of library targets LV 1and LV2 (-) at 450/VP.
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Figure 6.21. Normalized response energy curves of the test target LV2produced by the K-pulses of library targets LV1 (.and LV 2 (- ) at 60*/VP.

207



~0.00 0.50 1.00 1.50 2.00 2.50

-OP

uLJ

Cioand 0.50 1.-0 at5 2.00V

208



0.00 0.50 1.00 1.50 2.00 2.50

U-i

r-i

Qc 0 i C1

Cr

<''.0. . . .' .10 .0200

TIE ns

2090



0.00 0.50 1.00 1.50 2.00 2.50
4= 1 1 1 1 1 1 1 , a C

-D

uAJ

Li

-J

Th.00 0.50 1.00 1.50 2.00 2.5em
TIME (ns)

(b) for SNR = 10 dB

Figure 6.23. Continued.
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CHAPTER VII

APPLICATIONS TO AIRCRAFT

In this chapter, applications of the proposed K-pulse estimation

and target identification techniques are extended to aircraft targets.

Approximate K-pulse waveforms of three small-scale electroplated

commercial aircraft models, referred to as A,, A2 and A3, are

synthesized from their vertically-polarized backscattered measurement

data in Sections A, B, and C of this chapter, respectively. Model

frequency span of the data used in the following demonstrations is

1 to 8 GHz for all three targets and the data were measured on the Ohio

State University compact RCS measurement range 153]. Demonstrations of

target identification for aircraft models A1, A2 and A3 are presented

in Section D for both (essentially) noise-free and noisy cases.

A. K-PULSE ESTIMATION FOR MODEL AIRCRAFT A1

An approximate K-pulse waveform of target A1 is synthesized using

a discrete mathematical representation for the continuous function

kc(t) (Equation (3.1)) whose time span is zero to 1.862 ns. The K-

2L1
pulse duration is estimated to be c where is the length of the

model aircraft. An optimal set of values for the equally-spaced

samples kc, k k; (N-60) are obtained by minimizing the costsampes 1 , 2? ...,9

function (Equation (3.9)) with a=1, b=O and 1=2. The aspect/
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polarization combinations used for K-pulse estimation are 0/VP and

900/VP where the aspect angles are measured from the nose-on direction.

The cut-off times are set to 2.2 ns and 1.3 ns at aspect angles o$ 00

and 90*, respectively. The resultant K-pulse waveform is shown in

Figure 7.1 . The complex zeros extracted from the Laplace transform of

this K-pulse are listed in Table 7.1, and are expected to approximate a

subset of the CNR frequencies of the model aircraft A1. The normalized

impulse response and K-pulse response waveform pairs of target A1 are

plotted in part (a) of Figures 7.2 through 7.8 for aspect angles of 0*,

300, 450, 600, 90*, 1208 and 1800, respectively for vertical

polarization. The corresponding normalized response energy curve-pairs

are shown in part (b) of the same figures. Partial natural mode

annihilation is easily observed at the aspect angles of 0*, 300, 450,

900 and 1200. Annihilation results at 600 and 1800 are relatively

poor, probably due to the fact that several complex pole-pairs of the

target are strongly excited at these aspect angle/polarization

combinations, but are not included in the zero pattern of the

approximate K-pulse spectrum. However, these results are tolerable

since the late-time energy content of the K-pulse response is not

larger than that of the impulse response at neither the 600 nor the

1800 cases (part (b) of Figures 7.5 and 7.8).

* All of the tables and figures are collected at the end of the

chapter.
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B. K-PULS.E ISTATION FOR NODL AIRCRAFT A2

An approximate K-pulse waveform of the target, A2, is synthesized

over the time interval zero to 2.117 ns. The duration of the K-pulse
2L2

is estimated to be -- where L2 is the length of the model aircraft.

As specified in Equation (3.1), the K-pulse waveform is composed of a

unit strength impulse function 6(t) and then a continuous function

kC(t) whose equally-spaced sample values k , k , ..., k (N-68) are

estimated by minimizing the cost function of Equation (3.9). The

backscattered data used for K-pulse estimation are measured at the

aspect angles of 00 and 900, both for vertical polarization. The

corresponding cut-off times are set to 2.35 ns and 1.3 ns. The

synthesized K-pulse waveform is shown in Figure 7.9. The normalized

impulse response and K-pulse response pairs of the target, A2, are

plotted in part (a) of Figures 7.10 through 7.15 at the aspect angles

of 00, 450, 600, 900, 120 ° and 1800, respectively for vertical

polarization. These results show that the waveform given in Figure 7.9

is a generally useful approximation to the K-pulse of the target. The

zeros of the Laplace transform of this K-pulse are extracted and listed

in Table 7.2 as the approximate complex poles of the model aircraft,

A2.

C. K-PULSE ESTIMATION FOR MODEL AIRCRAFT A3

The K-pulse waveform of the model aircraft, A3 , is estimated by

using the same discrete mathematical representation for the K-pulse

model as utilized in Sections A and B for targets A1 and A2,
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respectively. The continuous part of the K-pulse waveform is
c c

represented by the sample values k1 , k2, ... , (N-10O). The K-pulse

2L3
duration is estimated as - = 2.88 ns where L3 is the length of the

target. The data used for K-pulse synthesis are from 0/VP and 900/VP;

and the corresponding cut-off times are set to 2.3 ns and 1.25 ns. The

unknown sample values of the K-pulse are estimated via minimization of

the previously specified cost function, 5, (Equation (3.9)) and the

resultant approximate K-pulse waveform is shown in Figure 7.16.

Figures 7.17 through 7.23 show the pairs of normalized K-pulse response

and impulse response waveforms of the target, A3, as well as the

associated normalized response energy curves at the aspect angles of

0, 300, 450, 600, 900, 1200 and 1800 for vertical polarization. Both

the response plots and the energy plots show that the estimated K-pulse

waveform is useful in partially annihilating the late-time natural

oscillations of the target's response at almost all test aspects.

Results look especially good for the 0*, 450, 600, 900 and 1200 cases.

Estimated pole-pairs for the target, A3 , are given in Table 7.3. It

should also be noted that the K-pulse of model aircraft, A3, is

estimated from a measurement data with a frequency span 1 GHz to 8 GHz.

At the lowest measurement frequency, the wavelength is 30 cm which is

about 70% of the overall target length. Therefore, there is a strong

possibility that the list of extracted pole values given in Table 7.3

does not include some dominant pole-pairs related to the fuselage and

perhaps the wings of the aircraft. The same argument is also valid for

the pole extraction results of Sections A and B (for targets A1 and A2,
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respectively) since this 30 cm wavelength at the lowest available

measurement frequency is about 90% of the overall length of target A2

and approximately equal to the length of target A1.

D. TARGET IDENTIFICATION

The K-pulse library of this section is composed of the K-pulse

waveforms of model aircraft A1 , A2 and A3, which are shown in Figures

7.1, 7.9 and 7.16, respectively. All three targets are geometrically

complicated low-Q objects. For low-Q targets, even small variations in

the late-time response waveforms or in the corresponding normalized

energy curves play an important role in target identification. The

unknown target of the identification demonstrations is model aircraft

A1 in Figures 7.24 through 7.30; A2 in Figures 7.31 through 7.36; and

A3 in Figures 7.37 through 7.43. The aspect angle and polarization

combinations of the test data used in these examples are indicated in

the figure captions. As previously mentioned, the data used in the

demonstrations of this chapter were measured on the OSU Compact Range

where the noise contributions were not absolutely zero but extremely

small as compared, for example, to real-world radar measurements. To

make the demonstrations more realistic, certain amounts of uncorrelated

random Gaussian noise (generated from different seeds) are added to the

real and imaginary parts of the backscattered frequency domain data

which are used in Figures 7.24 through 7.43. In each case, the target

identification procedure is repeated for three different values of SNR;

infinite (without adding any noise to the original measurement data),

15 dB and 11 dB. All of the results for the SNR.11 dB case are shown
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in Figures 7.24 through 7.43, while the results obtained for the SNR=15

dB and SNR-- cases are presented only when they lead to different

identification decisions as compared to the SNR.11 dB case, for the

sake of brevity. Most of the figures are plotted on a magnified scale

showing the important high energy level variations of the response

energy curves in detail. Full scale versions of the energy plots and

the phase-magnitude plots for the noise-free and noise-contaminated

frequency domain data are included in only several cases in order to

keep the number of figures at a reasonable value but yet to give the

readers a general idea about what these plots look like.

The identification results for SNR.- show that the unknown target

can be identified correctly from the comparison of normalized response

energy curves produced by the library K-pulses in seventeen cases (at

all testing aspect angles for vertical polarization when the unknown

target is A1 or A2 ; and at 0*, 300, 450 and 600 when A3 is the test

target) out of twenty. There is no incorrect identification observed.

At 900, 1200 and 180* aspect angles with A3 being the unknown target,

the identification decision remains ambiguous between library targets

A2 and A3 while library target A1 can be definitely eliminated as not

being matched to the unknown target.

As the SNR is decreased to 15 dB, the identification results

summarized in the previous paragraph deteriorate somewhat so that the

unknown target in question cannot be identified anymore with certainty

at 600/VP when the test target is either A1 or A2. In the former case,

the result is totally ambiguous (Figure 7.27b) while in the latter

case, the mismatched library target A3 can be eliminated as not being
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the unknown target but A1 cannot be ruled out (Figure 7.33b). The rest

of the identification results are not affected drastically by the added

noise.

Finally, at the SNR of 11 dB, the number of cases for which the

identification procedure yields correct results drops to twelve. These

cases are demonstrated in Figures 7.24, 7.26, 7.28 and 7.29 for test

target A1 at the aspect angles of 00, 450, 900 and 1200, respectively;

in Figures 7.31, 7.32, 7.34 and 7.35 for test target A2 at 00, 450, 900

and 1200, respectively; and in Figures 7.37 through 7.40 for test

target A3 at 00, 300, 450 and 600, respectively. The results are

completely ambiguous at 180e/VP for test targets A1 (in Figure 7.30a)

and A2 (in Figure 7.36a). A false identification occurred in two

cases: Aircraft A1 is incorrectly identified as A2 at 60°/VP as shown

in Figure 7.27a; and aircraft A3 is identified as A2 at 1800/VP as

shown in Figure 7.43a. In the remaining four cases, only one of the

mismatched library targets can be ruled out by the identification

scheme. The identification decision is ambiguous between library

targets A and A at 30*/VP in Figure 7.25a; between A and A* at1 3 1 2

600/VP in Figure 7.33a; between A2 and A at 90°/VP and 120*/VP in

Figures 7.41a and 7.42b, respectively. (The superscript '*' denotes

the test target of these demonstrations.)

In summary, the correct identification score is observed to be

85%, 75% and 60% at the SNR values of infinity, 15 dB and 11 dB,

respectively, while the false identifications occur only when SNR=11 dB

with a score of about 10%. It should be noted that these identification

scores do not show the actual performance limits of the suggested
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identification scheme. The correct identification scores are expected

to increase for better library K-pulse estimates.
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Table 7. 1

Poles of Model Aircraft A
As Extracted from the K-pulse shown In Figure 7.1

109 Nepers/s; GHz scale sL1/c scale

-0.203 ± j 1.581 -1.188 ± j 9.252
-0.314 ± j 2.380 -1.837 ± J13.927
-0.253 ± j 2.583 -1.480 ± J15.115
-0.236 ± j 3.137 -1.381 ± j18.357
-0.339 t j 3.754 -1.984 ± J21.967
-0.509 ± j 4.159 -2.979 ± J24.326
-0.329 ± j 4.643 -1.925 ± J27.170
-0.494 ± j 5.322 -2.891 ± J31.143
-0.397 ± j 5.768 -2.323 ± J33.753
-0.516 ± j 6.208 -3.109 ± J36.328
-0.295 ± j 6.674 -1.726 ± J39.055
-0.466 ± j 7.358 -2.727 ± J43.057
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Table 7.2

Poles of Model Aircraft A2
As Extracted from the K-pulse shown in Figure 7.9

109 Nepers/s; GHz scale sL2/c scale

-0.209 + j 1.564 -1.390 ± j10.400
-0.285 ± j 1.923 -1.895 ± j12.787
-0.299 ± j 2.511 -1.988 ± j16.697
-0.310 ± j 3.119 -2.061 ± j20.740
-0.438 ± j 3.374 -2.913 ± J22.436
-0.463 ± j 3.705 -3.079 ± j24.637
-0.240 ± j 4.307 -1.596 J28.690
-0.275 ± j 4.931 -1.829 J32.790
-0.320 ± j 5.619 -2.128 ± J37.365
-0.228 ± j 6.206 -1.516 ± J41.268
-0.214 ± j 6.705 -1.423 ± j44.586
-0.399 ± j 7.275 -2.653 ± J48.376
-0.382 ± j 7.787 -2.540 ± J51.781
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Table 7.3

Poles of Model Aircraft A2

As Extracted from the K-pulse shovn Nf Figure 7.16

109Nepers/s; GHz scale sL 3 /c scale

-0.292 ±j 1.307 -2.641 ± J11.820
-0.161 ±j 1.832 -1.456 ± J16.568
-0.186 ±j 2.079 -1.682 ± J18.802
-0.203 *j 2.424 -1.836 ± J21.922
-0.241 ±j 2.772 -2.180 ± J25.069
-0.236 ± j 3.257 -2.134 ± J29.455
-0.189 ± j 3.646 -1.709 ± J32.973
-0.209 ± j 4.042 -1.890 ± J36.554
-0.250 ± J 4.336 -2.261 ± J39.213
-0.226 ± J 4.642 -2.044 ± J41.980
-0.220 ± j 4.970 -1.990 ± J44.947
-0.188 ± J 5.317 -1.700 ± J48.085
-0.197 ± j 5.692 -1.782 ± J51.476
-0.192 ± J 6.099 -1.736 ± J55.476
-0.253 ± j 6.451 -2.288 ± J58.340
-0.239 ± j 6.793 -2.161 ± J61.433
-0.270 ± j 7.061 -2.442 ± j63.857
-0.257 ± j 7.345 -2.324 ± j68.425
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Figure 7.24. Normalized response energy curves of the test target Al
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Figure 7.25. Normalized response energy curves (plotted on a magnified
scale) of the test target A1 produced by the K-pulses of
the library targets A1 (- ), A ( ..... ) and A (..)
at 300/VP for three different SNi levels.
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Figure 7.26. Normalized response energy curves (plotted on a magnified
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at 45*/VP from a noisy backscattered data with 9NR=11 dB.
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at 600/VP for three different SNP, levels.
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scale) of the test target A, produced by the K-pulses of
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at 900/VP from a noisy backscatt~red data with NR=11 dB.
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Figure 7.30. Normalized response energy curves (plotted on a magnified
scale) of the test target A1 produced by the K-pulses of
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at 180 0/VP for two dilferent SNR levels.
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figure 7.31. Normalized response energy curves of the test target A2
produced by the K-pulses of the library targets A1
( ..... ), A2 (-) and A (-...) at 0/VP from a noisy
backscattered data with SR=11 dB.
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Figure 7.32. Normalized response energy curves (plotted on a magnified
scale) of the test target A 2 produced by the K-pulses of
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at 45*/VP from a noisy backscatteted data with S;R=11 dB.
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at 60*/VP for three different SNR levels.
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Figure 7.35. Normalized response energy curves (plotted on a magnified
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at 1200/VP from a noisy backscattered data with ANR=1l dB.
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Figure 7.36. Normalized response energy curves (plotted on a magnified
scale) of the test target A 2 produced by the K-pulses of
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Figure 7.38. Normalized response energy curves (plotted on a magnified
scale) of the test target A 3 produced by the K-pulses of
the library targets A1I ( ... ), A 2 (-- and A (---- )
at 30*/VP from a noisy backs-,;ttered data with SIAR=11 dB.
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Figure 7.39. Normalized response energy curves (plotted on a magnified
scale) of the test target % 3 produced by the K-pulses of
the library targets A 1 ( ... ), A, 2 -* and A ( -
at 45*/VP from a noisy backscattered data with S R=l1 dB.
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Figure 7.40. Normalized response energy curves (plotted on a magnified
scale) of the test target A 3 produced by the K-pulses of
the library targets A 1 ( ... ), A 2 ( -- and A ( -)
at 60*/VP from a noisy backscattered data with SAR=11 dB.
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Figure 7.41. Normalized response energy curves (plotted on a magnified
scale) of the test target A3 produced by the K-pulses of
the library targets A1  .. ), A2  -- and A
at 90*/VP from a noisy backscattered data with S;R=l1 dB.
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CHAPTER VIII

CONCLUSIONS

This report has presented a K-pulse estimation technique and a

target identification scheme which can be applied to geometrically

complicated and generally low-Q radar targets of tactical importance

such as aircraft, surface ships and land vehicles. One of the basic

features of the K-pulse estimation technique is that it is based, in

principle, on the annihilation of the target's natural resonances under

K-pulse excitation. This goal is achieved by minimizing the energy

content of the target's natural response at sufficiently late-times.

The technique is applicable to almost all target geometries since it

does not require any a priori information on the system poles but only

uses measured or theoretical (when available) band-limited scattered

impulse response data of the target at several combinations of aspect

and radar polarization. It should be stressed that use of multi-

combinational data in K-pulse estimation, as suggested for the first

time in this report, has a crucial impact on extending the K-pulse

applications to realistically complicated problems.

The mathematical formulations of the K-pulse estimation technique

are based on a general K-pulse waveform model which is composed of a

unit strength impulse function at the initiation time of the waveform

and then a continuous time function of finite duration. Two different

approaches are utilized for the mathematical representation of the

303



continuous part of this K-pulse model, a discrete representation in

terms of a basis which is a collection of equally-spaced discrete delta

functions, and a continuous representation in terms of a basis of

modified Legendre polynomials. While the former approach was

originally introduced by Fok et al. [34,35], the latter one was

suggested and formalized for the first time in this report. The

discrete representation approach requires a rather simple mathematical

formulation but a large number of optimization variables (equally-

spaced sample values of the K-pulse waveform) involved in the energy

minimization procedure. On the other hand, formulation of the Legendre

polynomial approach is more complicated but usually leads to a much

faster K-pulse synthesis algorithm with a smaller number of

optimization variables (coefficients of a truncated Legendre polynomial

expansion). Furthermore, in the case of a discrete representation, the

K-pulse waveform needs to be interpolated between the sample points. A

linear interpolation can be utilized if the sampling rate is

sufficiently high. In the case of a Legendre polynomial representation,

however, no interpolation is necessary since the basis functions

themselves are continuous in time. Both of these representations are

utilized to estimate the K-pulse waveforms of both simple and

complicated target geometries with satisfactory results as demonstrated

in Chapters IV through VII.

As previously indicated, the suggested K-pulse estimation

technique utilizes the scattered impulse response data of the target in

question. Most of the time, the original scattering data are available

via band-limited measurements in the real-frequency domain and then the
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corresponding band-limited impulse response is obtained using the

standard inverse Fourier transformation technique. An important

question is to be asked at this point: how wide the bandwidth of

measurement data should be and which measurement frequency range would

yield more useful K-pulse estimation results? In answering this

question, it should be remembered that the K-pulse concept is built on

the idea of natural resonance annihilation. Therefore, under ideal

conditions, the frequency range of measurements should span the

resonance region for the particular target in question. However, in

many practical situations the measurement data may not be available at

very low frequencies so that only the higher frequency portions of the

resonance region can be utilized in K-pulse estimation. In the

demonstrations of Chapters V through VII, it is shown that a useful K-

pulse vaveform can still be synthesized using such incomplete data. In

some other practical cases, the available measurement frequency range

may be well above the resonance region of the overall geometrical

structure of the target. In such situations, the substructures of the

target are important and the synthesized K-pulse waveform may still be

useful in annihilating the natural resonances coming from the small

substructures of the target rather than those caused by the major parts

(such as the fuselage or wings of an aircraft) of the object. A pilot

study for this case is demonstrated in Appendix F using a set of very

narrow band full-scale radar measurement data from a real aircraft.

Another major concern in K-pulse synthesis is estimation of the

K-pulse duration and minimization cut-off times. Although there is no

straightforward way of guessing these parameters for complicated
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geometries, the use of a multi-combinational analysis approach is shown

to be quite useful in at least recognizing the errors coming from

inaccurate estimations of these important parameters. Also, some rules

of thumb that are found to be useful in intelligent guessing of K-pulse

duration and cut-off times are given in Appendix A.

Also suggested for the first time in this report is a target

identification scheme which is based on a normalized response energy

concept. For the demonstrations in Chapters IV through VII, a K-pulse

library is constructed for each class of targets. Each of these

libraries is composed of the pre-synthesized K-pulse waveforms of the

candidate targets which belong to the specific class in question. The

unknown test target is identified as one of the library targets whose

K-pulse waveform produces a normalized target response energy curve

which reaches high energy levels earlier than the other normalized

response energy curves produced by the rest of the library K-pulses

using the same spectral data. It has been demonstrated that as the SNR

of the scattering data decreases, the performance of this

identification scheme deteriorates gracefully but not catastrophically.

Even at SNR levels as low as 5 dB, the identification demonstrations

produce satisfactory results. It should be pointed out that better

identification results than those presented in this report can be

expected if the library K-pulses are estimated more accurately by

increasing the number of aspect and polarization combinations utilized

in the K-pulse estimation procedure, allowing a higher number of

iteration steps in the optimization algorithm and using a larger number

of basis functions to represent the continuous part of the K-pulse. At
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this stage of research, the main goal is to demonstrate the feasibility

of a target identification approach based on the K-pulse theory.

Therefore, the results of the identification demonstrations are

discussed rather qualitatively without going into a detailed

statistical analysis.

As indicated in Chapter III and Appendix C, target pole estimation

is one of the by-products of the suggested K-pulse synthesis technique.

It should be noted that the approximate pole-pairs extracted as the

zeros of the estimated K-pulse spectra can be expected to be reliable

only over the data frequency range utilized in the K-pulse synthesis

procedure.

In summary, it was never the intent in Kennaugh's definition of

the K-pulse that all singularities of a target be precisely cancelled

except in principle. For the simple (geometrically) targets of his

examples (wires, spheres), a simple zero model could approximately

cancel an infinite string of simple poles. For geometrically complex

targets, where numerous substructures ultimately contribute new strings

of singularities, such models are not possible. Consequently,

approximate K-pulses are in order which are no less useful but of less

precise definition. The success of the K-pulse procedures when applied

to the measured full-scale aircraft data (Appendix F) is a very

significant step in the development of the K-pulse as a tool to be

exploited for radar target identification. If one were to select one

set of results from this report which clearly justifies continued

research on the K-pulse as an identification algorithm, it would be

those results shown in Appendix F.
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We postulate that, ultimately, veighted K-pulses designed for

specific contributions of substructures and/or aspects and/or

polarizations will emerge. It is felt that the contents of this

report will significantly contribute toward the development and

application of such sophisticated K-pulses. New generations of radar

systems will present very sophisticated diagnostic tools to radar

applications. Hopefully, the K-pulse concept will make meaningful

contributions to such studies.
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APPENDIX A

ESTIMATION OF THE K-PULSE DURATION AND CUT-OFF TIMES

As indicated in Chapter III, the K-pulse duration (Tk) and the

cut-off times (TL1, i=1,2,...,I) are the most important parameters

involved in the K-pulse synthesis technique. More accurately, the

better these parameters are pre-estimated, the more satisfactory are

the results obtained. Unfortunately, there is no rigorous method of

estimating these time durations for an arbitrary object. Especially

for geometrically complicated and/or low-Q scatterers, the only viable

approach appears to be a partially trial-and-error method; it is

possible, however, to give several rules of thumb which work reasonably

well in the case of simple K-pulse estimation problems and materially

aid in making better initial guesses for the more complicated cases.

A. ESTIMATION OF K-PULSE DURATION

Estimation of K-pulse duration for various high-Q and low-Q

objects with simple geometries was studied by Fok et al. [34-35] in

detail. Observed was a very strong relationship between the K-pulse

duration and the pole density of various objects such as conducting

thin-wires, thin-loops, spheres and disks. For each of these objects,

the difference between the imaginary parts of the successive pole

values in a string is essentially constant. When the limit value of

this almost constant difference (as the index of poles increases) is
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denoted by 6w, in terms of radian frequency, the K-pulse duration can

be estimated as

T 2n (A.1)
k =4W.

It was demonstrated in (341 that Equation (A.1) led to accurate K-pulse

durations of 2L/c for a thin-wire of length L; and 2nr/c for a thin

circular loop, a sphere and a circular disk where r is the radius of

these geometries. In all these cases, the K-pulse duration equals a

closed path length around the object divided by the speed of light.

This observation can be used as a rule of thumb in the estimation of K-

pulse durations for more complicated geometries in the sense that while

it does not guarantee a correct duration, especially in the case of

complicated geometries, it at least provides a reasonable initial

guess. As was also discussed by Fok (341, the K-pulse duration is

approximately equal to the period of the dominant late-time

oscillations of the object's impulse response. But such an estimation

appears to be primarily limited to high-O targets where natural impulse

response components are not contaminated by forced response components

over a sufficiently long time interval at the tail of the signal.

Most of the targets utilized in this report show low-O features

and have very complicated geometries. Therefore. neither of the rules

of thumb summarized above are completely satisfactory. From

experience, however, choosing the K-pulse duration in the range Z 'c J

where L is the maximum line-of-sight dimensions of the target provides

a useful initial guess for this parameter. If the pre-estimated
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duration was less than the minimal K-pulse duration (of the theoretical

unique K-pulse) either a serious convergence difficulty would be

observed in the minimization of cost function, or the synthesized (so-

called) K-pulse waveform would fail to reduce the late-time energy

content of the target response at most of the aspects not used for

K-pulse estimation. In such a case, the K-pulse synthesis procedure

needs to be repeated for a longer K-pulse duration until a satisfactory

result is obtained. On the other hand, if the pre-estimated K-pulse

duration is longer than necessary, the resultant K-pulse waveform would

be an acceptable approximation to the unique K-pulse except that its

K-pulse spectrum would be zero at some additional complex frequency

values different than the poles of the target in question. In this

case, the approximate K-pulse waveform can be expressed as a

confi2 ,tion of two time functions as

k(t) = kU(t)*a(t) , (A.2a)

for

t c- [0,T] 0 (A.2b)

,where kU (t) is the "unique" K-pulse with the minimal K-pulse duration

Tu < T; and a(t) is an arbitrary function of duration T such thatk k a

Tk = Tk +T . (A.2c)

The Laplace domain counterpart of Equation (A.2a) is
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K(s) - KU(s) A(s) , (A.3a)

and the solution of the non-linear equation

K(s) = 0 (A.3b)

gives not only the zeros of the unique K-pulse component, i.e., the

target poles, but also the zeros of the function A(s). Since the

primary concern here is target identification rather than pole

extraction, estimating the K-pulse duration somewhat longer than

necessary should not cause to a serious problem. In the K-pulse

estimation for a conducting sphere (Chapter IV, Section B), the K-pulse

duration is chosen about 6.4% longer than its actual value and it is

observed that such a difference effected neither the extracted pole

values nor the target identification performance drastically. As a

matter of fact, no extra K-pulse spectrum zeros were detected as a

result of this small perturbation.

B. ESTIMATION OF CUT-OFF TIMES

As indicated in Chapter III, a cut-off time, TL , is an estimate

of the target's forced response duration at an arbitrary aspect and

polarization under the K-pulse excitation. The choice of a cut-off

time directly effects the result of the K-pulse synthesis procedure

since the minimization of late-time response energy content is

for t > TL. If the minimization is started before theperformed frt T ftemnmzto ssatdbfr h

forced response dies out, i.e., if the cut-off time is chosen earlier
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than its correct value, the spectrum zeros of the synthesized K-pulse

would be totally different from the target poles and most probably

would be aspect and polarization dependent. Consequently, the

synthesized waveform would be only a time-limited function but not a K-

pulse. To avoid this basic problem, the cut-off time should be chosen

as late as possible. Although this can be done in the case of a high-Q

object whose natural response keeps ringing at late-times with

sufficiently large amounts of energy to be minimized, the same

precaution usually does not work for low-Q objects whose natural

oscillations die out very quickly leaving a very small amount of late-

time energy content for minimization. The only rule of thumb which can

be suggested for an initial estimation of a cut-off time follows from

the expression of K-pulse response

r i(t) = h i(t) * k(t) (A.4a)

where the target's impulse response can be implicitly decomposed into

the forced and natural components as

h i(t) = hi f(t) + h in(t) , (A.4b)

then Equation (A.4b) can be rewritten as

i il~t hi~)(.c
r (t) - h f(t) * k(t) + h (t) * k(t) ,(A.4c)
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where from the time duration of the first term on the right hand side

(the forced response component), the cut-off time, TL , can be roughly

estimated as

i ~-L
T : + T (A.4d)L C k

with L being the maximum line-of-sight dimension of the target.

Starting with this initial guess, a better estimate of the cut-off time

can be obtained via essentially a trial-and-error approach. As

discussed by Felsen [561, a scattered field excited by an aperiodic

short pulse can be interpreted as multiple vavefront arrivals not only

during the early time interval but also at moderate subsequent times;

and these incident vavefronts directly excite only the illuminated

portion of a smooth convex object. The surface points on the

geometrical shadow are rather excited by the creeping waves for the

first time. Therefore, depending upon the geometry of the target, the

actual forced response duration becomes different than the rough

estimate given in Equation (A.4d). It should also be noted that the

late-time energy minimization (beyond the cut-off time) approach

utilized in this report is supported by the comments of Felsen [561 and

Dudley [57] on the Singularity Expansion Method (SEM). They both

pointed out that scattered fields should be expressed in the frequency

domain as a superposition of two components, an entire function which

characterizes the local information provided by ray-optic method and

related to early-time content of the time-domain scattered field; and

an expansion over the poles of a meromorphic function which contain the

314



function which contain the global information about the target and can

be provided by the SEM at late-times in the time domain. It was also

noted that contributions coming from these tvo separate scattering

mechanisms interfere vith each other at intermediate times. This

interference causes the basic problem in the estimation of cut-off

times during the K-pulse synthesis procedure especially for low-Q

targets.

Before concluding this appendix, it should be pointed out that the

"multi-combinational" analysis approach suggested for K-pulse

estimation greatly reduces the risk of estimating K-pulse duration and

the cut-off times incorrectly. When any of these parameters are pre-

estimated improperly, the resultant K-pulse spectrum zeros may be

useful in (partially) minimizing the target's late-time response at one

aspect but not at the remaining ones. Consequently, the minimization

procedure exhibits a very slow convergence rate or does not converge at

all. Such a situation is a very useful warning signal that the pre-

estimated values of K-pulse duration and/or cut-off times need to be

readjusted. These adjustments call for a trial-and-error approach

which may be time-consuming, but unfortunately appears to be the only

viable approach at this stage of the K-pulse studies.
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APPENDIX B

UPRTATION OF NORIALIZED ERGY CURVES IN TARGET IDENTIFICATION

The basic idea behind using a normalized energy concept in target

identification is explained in Chapter III and the related

demonstrations are presented in Chapters IV through VII. The purpose

of this appendix is to provide further discussion on hov to interpret

the relative differences of matched and mismatched normalized response

energy curves in various situations in order to make an intelligent

identification decision.

As mentioned previously, the normalized energy curve of a target's

response to its own K-pulse (matched case) Is expected to reach high

energy levels earlier than the normalized response energy curves which

correspond to the mismatched K-pulse vaveforms of the K-pulse library.

If the matched K-pulse is able to annihilate a significant amount of

late-time natural response energy, the matched energy curve leads the

mismatched energy curves not only at high energy levels but also at

moderate or even very small energy levels. An example of this

situation is observed in Figure 4.11b of Chapter IV for a conducting

thin wire of length 12m at 600 aspect angle where the matched energy

curve leads the mismatched ones very dominantly (since the targets are

very high-Q objects) at all energy levels higher than about 65%.

Another target identification example vhere the energy curves exhibit a

similar behavior is shown in Figure 5.33 of Chapter V where the test
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target is the model ship SH2 and the mismatched library target is SH1

at a 600/VP combination. Since the targets of this example are

relatively lov-Q objects (as compared to conducting thin-wires of the

previous example), the separation of the matched and mismatched energy

curves is not very large. The target identification decision in the

cases similar to these examples can be made without any uncertainty.

In some cases, however, the matched and mismatched energy curves may

exhibit such a variation that they arbitrarily lead or lag one another

in some intermediate energy range but at high energy levels one of them

starts leading substantially. An example of this situation is presented

in Figure 5.25 of Chapter V for model ship SH1 at 30°/VP where the

other library target is SH2. In this example, the mismatched energy

curve leads the matched one up to about 70% energy level, then the

matched curve reaches energy levels in the range 70% to 98% much

earlier than the mismatched one. In such a case, the identification

decision should be made in favor of the library target whose energy

curve shows a better performance at high energy levels which are the

main concern of the identification scheme. If one of the curves lags

the other one at most of the energy levels but starts leading slightly

at high energies, it is very difficult to make an identification

decision with confidence. Such results are usually referred to as

ambiguous ones in this report. Figure 5.29 of Chapter V shows an

example of this case where the test target is model ship SH1 at

170 0/VP; and its matched energy curve leads the mismatched one only

after 92% energy level by about 3% average energy difference only. Yet

in some other cases, there may be no noticeable difference between
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matched and mismatched energy curves as shown in Figure 7.41 of Chapter

VII vhere the library targets are the model aircraft A1 , A2 and A3 vith

A3 being the test target at 90°/VP. In this example, the matched

energy curve leads one of the mismatched energy curves (due to the K-

pulse of target A1 ) but shows about the same variations as the other

mismatched energy curve (due to the K-pulse of target A2 ) for almost

all energy levels. Consequently, the library target A1 can be

eliminated easily as not being the "unknown target," but the rest of

the identification decision is left to be ambiguous betveen targets A2

and A3. Such a situation probably occurs either when the matched K-

pulse of the test target does not work well enough at the combination

of aspect and polarization being tested or when two library targets

have a common (or at least close) pole pair excited strongly at that

combination of aspect and polarization so that both the matched and

mismatched K-pulses annihilate the natural resonances coming from that

pole-pair equally well. In the former case, a better estimate for the

matched K-pulse is called for but in the latter case, there is not much

that one can do to improve the identification results since the

uncertainty arises from the similar characteristics of the targets.

The performance of the identification scheme deteriorates under

noisy conditions, as expected. The effect of noise energy is mostly

observed at the tail of the normalized energy curves where the amount

of noise energy is comparable to or even greater than the signal

energy. As demonstrated in Figure 7.24 of Chapter VII, a correct

identification decision can still be made at quite low SNR values (as

low as 11 dB for this example and even lower for some other cases), if
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the approximate library K-pulse associated with the "unknown" target

annihilates the natural oscillations of the object sufficiently well

under essentially noise-free conditions (see Figure 7.2 of Chapter

VII). On the other hand, if the performance of the matched K-pulse is

already poor at a particular aspect/polarization, it is more likely

that the added noise will cause ambiguous or even false identification

results as the SNR decreases. An example of this situation is given in

Figure 7.27 of Chapter VII in conjunction with Figure 7.5 of the same

chapter. Consequently, the success of identification scheme (either in

noise-free or noisy cases) largely depends on the success of the

K-pulse estimation procedure.
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APPENDIX C

EXTRACTION OF TARGET POLES FROM THE K-PULSE

As explained in Chapter III, there should be a one-to-one

correspondence between the poles (CNR frequencies) of a finite

electromagnetic scatterer and the zeros of the Laplace transform of its

"unique" K-pulse vaveform. In practical cases, however, the Laplace

domain zeros of an "approximate" K-pulse cannot satisfy such a strict

condition; but they are expected to approximate a subset of the

target's poles as close as possible. When a K-pulse vaveform is

estimated from some bandlimited theoretical or measurement data

(without using a priori knowledge of the target poles), some of its

spectrum zeros may not match to the actual target poles, or its Laplace

transform may fail to be zero at certain target pole values over the

frequency span utilized for K-pulse estimation.

The basic K-pulse synthesis technique formulated and utilized in

this report estimates the discrete sample values of the continuous part

of the K-pulse vaveform. As discussed by Fok [341, if the time

sampling increment is chosen to be sufficiently small, the continuous

function, kC (t), can be well approximated by means of linear

interpolation between the sampling points. Then, the derivative of

kc (t) can be written as
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tkC(t) = kl&(t) + kn Pk V~2 (t-(4 ) k N&( t-Tk)

n-1

(C.la)

where

k n kc(t) for n=1,2,...,N (C.lb)

are discrete samples of the continuous part of the K-pulse waveform

with N being the total number of samples; T is the sampling step size

and

f1 if - /2<t<- /2

1./2t) 0 otherwise (.c

is the rectangular pulse function.

The Laplace transform of the K-pulse waveform can be computed as

K(s) - L(S(t) + k c()

= 1 +K c(S) ,(C.2a)

where

K()= L kc(t)y(s L, (C.2b)

or

r-T s N-1 1 (k -n-1T
KC(S) [1 k - kN ek 7 kek L

n= 1
(C.2c)

with

L( -2() es/ Se~s' (C. 2d)
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After some algebraic manipulations, K(s) can be obtained as

-TkS N-Ik, - kN e•T e s - 1 N-1 nx

K(s) I+ s + 2 E (k n+l-k)e , (C.3a)

n-i

and the non-linear equation

K(s) - 0 (C.3b)

can be solved to estimate the target poles (CNR frequencies). In this

report, the complex roots of Equation (C.3b) are computed by using the

Secant method (37]. It should be noted that the same pole extraction

procedure was suggested earlier by Fok et al. in [34].
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APPENDIX D

ORIGINAL AND MODIFIED LEGENDRE POLYNOMIALS

The purpose of this appendix is to summarize the basic definitions

and the orthogonality properties of the original and modified (as used

in this report) Legendre polynomials to clarify the derivations given

in Section B of Chapter III.

The Legendre polynomials are originally defined 1381 as

n

Pn(z) = Z. zn, (D.la)
m=O

for

z 4 [-1,1] , (D. b)

where n-0,1,2,... being the polynomial order and

(_1 )(n-m)/2 (n+m)I if n and m are

of the same parity

= (D.lc)

0 otherwise

323



The infinite set of Legendre polynomials, (P (z)) nOO constitute

a complete and orthogonal basis for the continuous functions over the

interval [-1,1]. The well-known orthogonality property is stated as

_ {02n if n-m

P(Z) P (z) dz = n-rn (D.2)
J-l if nom

The interval of definition required by the derivations of Section

B of Chapter III is [O,Tk] where Tk is the K-pulse duration.

Therefore, using the transformation,

T
t (z+l) , (D.3a)

or equivalently,

z t - 1 , (D.3b)T k

the original interval [-1,11 can be mapped onto the modified interval

10,Tk]. The resultant set of modified Legendre polynomials,

(Pn(t)) in=o, are defined as

Pn(t) = I , (D.4a)

T k

or

n

P n(t) = a I nm T-, (D.4b)

3m=2
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for

t a [0,Tk 0 (D.4c)

The orthogonality property for this new set of basis functions can

easily be derived by using Equations (D.2), (D.3b), and (D.4b) as

T 1 if n-rn
k F(t) P (t) d t .=~ (D.5)

0 n m 0if nom
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APPENDIX E

SIMULATION OF NOISY DATA

The original data utilized in this report are either theoretically

computed (Chapter IV) or measured on the Ohio State University compact

measurement range 1531 (in Chapters V-VII). In the former case,

signal-to-noise ratio (SNR) of the data equals infinity; and in the

latter case, it is finite but much larger than a typical SNR of a full

scale radar measurement since the clutter type noise is minimized on

the measurement range. The noisy data, which are essential for testing

the noise performance of the proposed target identification scheme in

Chapters IV through VII, are produced artificially by adding white

Gaussian noise to the available data. Two uncorrelated Gaussian random

processes [55] with zero means and equal standard deviations are

generated from two different seeds (using the subroutine GAUSS in the

IBM/360 Scientific Subroutine Package) and added to the real and

imaginary parts of the original frequency spectra independently. The

SNR of the resultant noisy signal is defined as

SNR(dB) = 10 log H / 22 (E.1)

where Hi is the complex value of the original signal spectrum at the

sampling frequency fi, N is the total number of samples used and a is
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the standard deviation of the random Gaussian processes. The factor 2

which appears at the denominator of Equation (E.1) is due to adding two

different random noise processes to the real and imaginary parts of the

signal spectrum separately.
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APPENDIX P

K-PULSE ESTIMATION FOR A FULL-SCALE AIRCRAFT

In this appendix, the suggested K-pulse estimation technique is

applied to a small jet aircraft, to be referred to as target A

hereafter, using frequency domain backsattered data measured by a full-

scale stepped-frequency radar system over the frequency range 3.1-

(0.0048)-3.4024 GHz . At the lowest available measurement frequency,

the ratio of the wavelength to the overall length of the aircraft is

less than one percent and the data are recorded at only 64 sample

frequencies. As far as the frequency range and bandwidth

specifications are concerned, this demonstration is quite different

than the others presented in Chapters IV through VII. In this specific

problem, not only is the measurement bandwidth quite narrow but also

the measurements are at very high frequencies so that the information

provided by the scattered data can be best interpreted by means of high

frequency techniques such as GTD. When it comes to K-pulse studies, it

should be stressed that being able to estimate a useful K-pulse

waveform under such realistic and highly restricted conditions is an

* These polarimetric backscattered data were provided to the
ElectroScience Laboratory by Dr. D. Wiener of the Naval Ocean System
Center.
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ultimate goal which needs further research to solidify the outcomes

reported in this report. However, the present K-pulse estimation

technique as outlined in Chapter III can still be applied to this

problem under the recognition that at such high measurement

frequencies, only the dominant natural modes of sufficiently small

substructures of the aircraft are strongly excited. Therefore, the

pre-estimated K-pulse duration should be chosen much smaller than 2L/c

where L is the overall length of the target. Before going into the

details of the K-pulse estimation procedure, a major difficulty

observed in synthesizing the impulse response of this full-scale

aircraft from the available measurement data needs to be mentioned. As

repeatedly indicated in the application chapters, the impulse response

of the target is numerically synthesized from the frequency domain data

using a standard IFFT (inverse fast Fourier transformation) algorithm

which simply assumes zero values for the missing samples of the

frequency spectrum between zero frequency and the starting frequency of

the data. Consequently, when the available data are located at very

high frequencies over a narrow bandwidth with a small number of

samples, as is the case in this example, the numerical inversion

technique introduces an important amount of error to the resultant

impulse response waveform. Furthermore, the high frequency components

exhibit very rapid variations in the impulse response making it almost

useless for employment in the K-pulse estimation procedure. As a

practical solution to these difficulties, the original frequency data

of the aircraft A4 are shifted by ±&)0 where w0=2nf0 and f is the

chosen to be 3.09 GHz. Then the resultant composite data spectrum is
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weighted by a band-pass Hanning window function eliminating the very

high frequency components, which appear around ±6 GHz, beyond ±0.32

GHz. The relationship between the original data spectrum, H(W), and

the composite one, ff(w), can be expressed as

(H(w) - [H(w-w 0) + H((*o 0)1 W(o)) . (F.1)

where H()-0 ) and H(w+ 0) are the right and left shifted versions of

the originally measured spectrum and W(w) is the window spectrum.

Although the inverse Fourier transform of ff(w) is no longer simply the

impulse response of the target, this composite frequency spectrum still

contains the target pole information. As discussed in [561 and [571,

the system function of an electromagnetic scatter can be expressed as

N(s) .)
H(s) - A(s) + D(s) (F.2)

where A(s), N(s) and D(s) are all entire functions and the zeros of the

denominator function D(s) specify the simple poles of the system.

Using the complex-frequency counterpart of Equation (F.1) together with

Equation (F.2) yields

N(s-s )D(s+s ) + N(s+s )D(s-so)
H(s) M [A(s-s 0) + A(s+s ) + D(s-s0 D s+s0) 1 ]W(S),

(F.3a)

where
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so M jo (F.3b)

Obviously, the poles, in , of the equation

H(s) = 0 (F.4a)

are located at

9(n) - s n ± Jo)0  (F.4b)

where the S n 's denote the actual poles of the target. In the

particular problem of this appendix, the shifted pole values would be

essentially excited only over the frequency range 0.01 GHz to 0.3124

GHz as a result of the frequency gating effect introduced by the window

function. In summary, the K-pulse estimation proce.:e demonstrated

for target A annihilates the natural oscillations of a "composite

impulse response" which is closely related to the target's actual

impulse response as described by Equations (F.1) and (F.3).

An approximate (substructure-related) K-pulse waveform for

aircraft A is synthesized from the data at 10/VP and 910/VP* using a

discrete representation for the continuous part of the K-pulse over the

time interval [0,10.16 ns]. The initial guess for the K-pulse duration

• The aspect angles are calculated via a computer program using the
values of range and azimuth angle which were measured while the
aircraft was following an almost circular flight path.
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was 2L/c - 80 ns where L is the overall length of the aircraft, but

this choice produced very unsatisfactory results as expected. After

some preliminary trials (all smaller than 80 ns), a K-pulse duration of

about 10 ns is found to lead to quite satisfactory results. The values

of the K-pulse samples k1, k , ... , k with N-40 are estimated by

minimizing the cost function specified in Equation (3.9) for the cut-

off times 160 ns and 110 ns at the synthesis aspect angles of 1' and

910, respectively. The resultant K-pulse waveform is shown in Figure

F.l. The Laplace domain zeros of this K-pulse are also numerically

extracted and their shifted (by 3.09 GHz in the imaginary part) values

are listed in Table F.1 as a set of approximate target poles for

aircraft A. The composite impulse response and the corresponding

composite K-pulse response vaveforms are plotted together in parts (a)

of Figures F.2 through F.9 at the aspect angles of 1*, 300, 440, 600,

910, 1190, 1500 and 1790, respectively for vertical polarization.

(Each of these response waveforms is normalized such that its total

energy is unity.) The corresponding normalized energy curves are also

shown in parts (b) of the same figures. Similar results are provided

in Figures F.10 through F.13 for the aspect angles of 1, 440, 750 and

1500, respectively for horizontal polarization. The results shown for

the aspect/polarization combinations of 1°/VP, 300/VP, 440/VP, 91/VP,

10/HP, 44*/HP and 750 /HP are observed to be quite successful in the

sense that the late-time energy content of the composite K-pulse

response waveform is smaller than that of the composite impulse

response waveform as a due to partial natural mode annihilation. The

results at 600/VP, 119/VP, 150*/VP and 1500/HP while not excellent are
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acceptable but the results at 179e/VP turns out to be very poor.

However, deterioration of the results at 179*/VP can be explained by

the fact that only two aspect angles, 10 and 910 which are both far

from the aspect angle 179*, are utilized in the K-pulse estimation

procedure. If the estimation procedure is repeated by using the

aircraft data at some additional combinations of aspect and

polarization including one or two more aspect angles in the range 900

to 1800 and also including some horizontal polarization data, a better

approximation for the K-pulse waveform can be expected. After

demonstrating these pilot results on the K-pulse estimation for a full-

scale aircraft from a real radar measurement data set, further research

and possible improvements are left to be the subject of future K-pulse

studies.
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Table F. 1

A Set of Approximate Target Pole-pairs
Estimated by Using the Laplace Domain Zeros

of the K-pulse Shown in Figure F.1

910 Nepers/s, GHz scale

-0.0300 _ j 3.211
-0.0142 ± j 3.273
-0.0014 + j 3.327
-0.0192 _ j 3.483
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Figure F.1. An approximate K-pulse waveform for the aircraft A
estimated from a set of narrow band (3.1 GHz to 3.4024
GHz) backscattered data at la/VP and 910/VP. (The 6(t)
term of the K-pulse is symbolically shown by the arrow at
t=0.)
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Figure F.3. Normalized composite impulse response .)and
composite K-pulse response (-) waveforms and their
energy curves for aircraft A at 30*/VP.
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Figure F.4. Normalized composite impulse response .)and

composite K-pulse response (-) waveforms and their
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energy curves for aircraft A at 600/VP.
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Figure F.6. Normalized composite impulse response . )and
composite K-pulse response (-) waveforms and their
energy curves for aircraft A at 91*/VP.
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Figure F.7. Normalized composite impulse response . )and
composite K-pulse response (-) waveforms and their
energy curves for aircraft A at 119 0/VP.
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Figure F.10. Normalized composite impulse response . )and
composite K-pulse response (-) waveforms and their
energy curves for aircraft A at 10/HP.
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Figure F.11. Normalized composite impulse response . )and
composite K-pulse response (-) waveforms and their
energy curves for aircraft A at 441HP.
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Figure F.12. Normalized composite impulse response .)and
composite K-pulse response -)waveforms and their
energy curves for aircraft A at 75'/HP.
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